
SGOOD: Substructure-enhanced Graph-Level Out-of-Distribution
Detection

Zhihao Ding

tommy-zh.ding@connect.polyu.hk

Hong Kong Polytechnic University

Hong Kong SAR, China

Jieming Shi
∗

jieming.shi@polyu.edu.hk

Hong Kong Polytechnic University

Hong Kong SAR, China

Shiqi Shen

shiqishen@tencent.com

WeChat, Tencent

Beijing, China

Xuequn Shang

shang@nwpu.edu.cn

Northwestern Polytechnical

University

Xi’an, China

Jiannong Cao

csjcao@comp.polyu.edu.hk

Hong Kong Polytechnic University

Hong Kong SAR, China

Zhipeng Wang

markrocwang@tencent.com

WeChat, Tencent

Beijing, China

Zhi Gong

davidgong@tencent.com

WeChat, Tencent

Beijing, China

Abstract
Graph-level representation learning is important in a wide range

of applications. Existing graph-level models are generally built on

i.i.d. assumption for both training and testing graphs. However, in

an open world, models can encounter out-of-distribution (OOD)

testing graphs that are from different distributions unknown dur-

ing training. A trustworthy model should be able to detect OOD

graphs to avoid unreliable predictions, while producing accurate in-

distribution (ID) predictions. To achieve this, we present SGOOD, a

novel graph-level OOD detection framework. We find that substruc-

ture differences commonly exist between ID and OOD graphs, and

design SGOOD with a series of techniques to encode task-agnostic

substructures for effective OOD detection. Specifically, we build a

super graph of substructures for every graph, and develop a two-

level graph encoding pipeline that works on both original graphs

and super graphs to obtain substructure-enhanced graph represen-

tations. We then devise substructure-preserving graph augmenta-

tion techniques to further capture more substructure semantics of

ID graphs. Extensive experiments against 11 competitors on numer-

ous graph datasets demonstrate the superiority of SGOOD, often

surpassing existing methods by a significant margin. The code is

available at https://github.com/TommyDzh/SGOOD.

CCS Concepts
• Computing methodologies→ Neural networks.

∗
Corresponding Author.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

CIKM ’24, October 21–25, 2024, Boise, ID, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0436-9/24/10

https://doi.org/10.1145/3627673.3679710

Keywords
Out-of-distributionDetection, TrustworthyModel, Reliability, Graph

Classification

ACM Reference Format:
ZhihaoDing, Jieming Shi, Shiqi Shen, Xuequn Shang, Jiannong Cao, Zhipeng

Wang, and Zhi Gong. 2024. SGOOD: Substructure-enhanced Graph-Level

Out-of-Distribution Detection. In Proceedings of the 33rd ACM International
Conference on Information and Knowledge Management (CIKM ’24), October
21–25, 2024, Boise, ID, USA. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3627673.3679710

1 Introduction
Graphs are widely used to represent complex structured data, e.g.,
chemical compounds, proteins, and social networks. Graph-level

representation learning, which extracts meaningful representations

of these graphs, is crucial for applications in biochemistry [16, 29]

and social network analysis [7, 30]. Existing graph-level learning

models are based on the closed-world assumption, in which test-

ing graphs encountered at deployment are drawn i.i.d. from the

same distribution as the training graph data. However, in reality,

the models are actually in an open world, where test graphs can
come from different, previously unseen distributions, making them

out-of-distribution (OOD) w.r.t. in-distribution (ID) training graphs

[20, 21, 38]. Consequently, the models trained solely by ID graphs

tend to make incorrect predictions on OOD data [13], which raises

reliability concerns in safety-critical applications, e.g., drug discov-

ery [1]. A trustworthy graph-level learningmodel should be capable

of identifying OOD test graphs to avoid unreliable predictions.

While initial efforts have been made to explore graph-level OOD

detection [10, 21, 24], these methods primarily rely on message-

passing graph neural networks (GNNs) [12, 17] to first get node rep-

resentations and then generate graph-level representations solely

based on these nodes. Substructure patterns, which are high-level

graph structures and contain rich graph semantics [38, 44], have

yet to be leveraged for graph-level OOD detection. Intuitively, an

OOD detector that can distinguish both node-level structures and

https://orcid.org/0000-0001-7778-6142
https://orcid.org/0000-0002-0465-1551
https://orcid.org/0009-0002-5442-2121
https://orcid.org/0000-0002-7249-8210
https://orcid.org/0000-0002-2725-2529
https://orcid.org/0009-0003-2711-047X
https://orcid.org/0009-0002-1850-3848
https://github.com/TommyDzh/SGOOD
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3627673.3679710
https://doi.org/10.1145/3627673.3679710
https://doi.org/10.1145/3627673.3679710

CIKM ’24, October 21–25, 2024, Boise, ID, USA Zhihao Ding et al.

Table 1: The percentage of OOD graphs with substructures
never appeared in ID graphs.

Data ENZYMES IMDB-M IMDB-B BACE BBBP DrugOOD

58.9% 14.0% 8.5% 50.0% 44.6% 77.3%

ID graphs unseen

OOD graph

Embedding space

:Graph embedding :Substructure

ID Class 1

ID Class 2

Figure 1: Substructure-enhanced graph-level OOD detection
substructure patterns would be more effective. However, leveraging

substructures for OOD detection is challenging due to the absence

of OOD graphs during training, making it difficult to determine in

advance which substructure patterns should be learned for identi-

fying OOD samples. Existing substructure learning methods, e.g.,
hierarchical GNNs [9, 18, 39] and subgraph GNNs [42, 46], typically

learn task-specific substructures that are tailored to discriminate

between labeled classes in the training set. We argue that such task-

specific substructures are not sufficient for OOD detection. Instead,

the detector should be able to learn a diverse set of substructure

patterns from ID training graphs, including task-agnostic substruc-
tures not associated with specific classification tasks. As illustrated

in Figure 1, the two ID graphs can be classified into different classes

based on the presence of a task-specific triangle substructure (in

blue). However, to identify the OOD graph, we need to compare its

substructures to the task-agnostic ones such as the 6-node cycle (in

green), to detect the irregular substructure (in orange). Therefore,

effectively leveraging substructures for graph-level OOD detection

requires considering task-agnostic information [32], a capability

lacking in existing graph OOD detection methods.

In this paper, we develop SGOOD, a novel framework that explic-

itly encodes task-agnostic substructures and their relationships into

effective representations for graph-level OOD detection. The de-

sign of SGOOD is supported by empirical findings that demonstrate

the crucial role of task-agnostic substructures in distinguishing

between ID and OOD graphs. Given a dataset of graphs (see Table

2 for data statistics), we apply community detection [3] to extract

task-agnostic substructures. The substructures are task-agnostic

since the adopted community detection is independent of specific

learning tasks. Then the percentage of OOD graphs with substruc-

tures that never appeared in ID graphs per dataset is reported in

Table 1. Observe that such percentage values are high, more than

44% in 4 out of 6 datasets. The results validate that task-agnostic

substructures can reveal differences between ID and OOD graphs.

As illustrated in Figure 1, if a method can preserve the task-agnostic

substructures of ID graphs into embeddings, OOD graphs with un-

seen substructures will have embeddings distant from those of ID

graphs, making them easy to detect.

Therefore, we design a series of techniques in SGOOD to effec-

tively encode task-agnostic substructures and generate substructure-

enhanced graph representations for graph-level OOD detection.

Specifically, we first build a super graph G𝑖 of substructures for

every graph𝐺𝑖 to obtain task-agnostic substructures and their rela-

tionships. Then, a two-level graph encoding pipeline is designed

to work on 𝐺𝑖 and G𝑖 in sequence to learn expressive substructure-

enhanced graph representations. We prove that SGOOD with the

pipeline is strictly more expressive than 1&2-WL, which theoret-

ically justifies the power of preserving substructure patterns for

OOD detection. Moreover, to capture more information about task-

agnostic substructures in training ID graphs, we design substructure-

preserving graph augmentation techniques, which utilize the super

graph of substructures to ensure that the substructures in a graph

are modified as a whole. At test time, given a graph 𝐺𝑖 and its

super graph G𝑖 , our OOD detector obtains the graph-level repre-

sentations of both, which are then used for OOD score estimation.

Extensive experiments compare SGOOD with 11 baselines across 8

real-world graph datasets with various OOD types. SGOOD consis-

tently outperforms existing methods, for example, achieving a 9.58%

absolute improvement in AUROC over the runner-up baseline on

the IMDB-M dataset. In summary, our contributions are:

• We present SGOOD, a leading method that highlights the im-

portance of task-agnostic substructures and effectively leverages

them to enhance graph-level OOD detection.

• We design a two-level graph encoding pipeline by leveraging

a super graph of substructures, empowering SGOOD to learn

graph representations enhanced with substructures.

• We further develop substructure-preserving graph augmenta-

tions via super graphs of substructures, to strengthen SGOOD’s

ability in distinguishing OOD graphs.

• Extensive experiments demonstrate the superiority of SGOOD for

graph-level OOD detection, achieving significant improvements

over existing methods across multiple datasets.

2 Preliminaries
We consider graph-level classification, which aims to classify a col-

lection of graphs into different classes. Let 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) be a graph,
where𝑉𝑖 and 𝐸𝑖 are node set and edge set, respectively. Let x𝑢 ∈ R𝑐

denote the attribute vector of node 𝑢 ∈ 𝑉𝑖 in graph 𝐺𝑖 . Denote

X as the in-distribution (ID) graph space and let Y = {1, 2, ...,𝐶}
be the label space. In graph-level classification, the training set

𝐷𝑖𝑛𝑡𝑟 = {(𝐺𝑖 , 𝑦𝑖)}𝑛𝑖=1 is drawn i.i.d. from the joint data distribution

𝑃XY . Every graph sample in 𝐷𝑖𝑛𝑡𝑟 contains a graph 𝐺𝑖 with label 𝑦𝑖 .

Let 𝑓 be a learning model trained by the training set 𝐷𝑖𝑛𝑡𝑟 , and 𝑓 is

deployed to predict the label of a testing graph.

Graph-level Out-Of-Distribution Detection.At test time, graph-

level OOD detection can be treated as a task to decide whether a

testing graph𝐺𝑖 in testing set 𝐷𝑡𝑒𝑠𝑡 is from the ID 𝑃X or from other

irrelevant distributions (i.e., OOD). A typical way for OOD detection

is to develop an OOD detector by leveraging the representations

generated from the classification model 𝑓 that is trained via ID

training graphs in 𝐷𝑖𝑛𝑡𝑟 . Specifically, the OOD detector has a scoring

function 𝑆 (𝐺𝑖) for every testing graph 𝐺𝑖 ∈ 𝐷𝑡𝑒𝑠𝑡 . Testing graphs
with low scores 𝑆 (𝐺𝑖) are regarded as ID, while the graphs with high
scores are OOD. As stated in [26], a score threshold 𝜆 is typically set

so that a high fraction of ID data (e.g., 95%) is correctly classified.

SGOOD: Substructure-enhanced Graph-Level Out-of-Distribution Detection CIKM ’24, October 21–25, 2024, Boise, ID, USA

ℒ𝐶𝐸

Substructure-Enhanced Graph Representations

𝐡𝐺𝑖

𝐡𝒢𝑖

Graph 𝐺𝑖

Two-level graph encoding

𝒢𝑖: Super Graph
of Substructures

GNNs

𝐡𝑔𝑖,𝑗
(0)

𝐡𝑔𝑖,𝑗

𝐡𝑣

Substructure-Preserving Graph Augmentations

Sampling(SG)

ℒ𝐶𝐿

Substitution(SS) 𝐮 መ𝒢𝑖,1

𝐮 መ𝒢𝑖,0Two-level
graph encoding

Detection

𝐳𝑖

OOD score
𝑆(𝐺𝑖)

POOL POOL

Dropping(SD)

Figure 2: The SGOOD framework.

3 The SGOOD Method
Solution Overview. The main goal of SGOOD is to effectively

encode task-agnostic substructures and their relationships into

representations for graph-level OOD detection. As illustrated in

Figure 2, SGOOD generates substructure-enhanced graph represen-

tations and further improves representation quality by substructure-

preserving graph augmentations. Given a graph 𝐺𝑖 , we first build

its super graph G𝑖 of task-agnostic substructures, in which a super

node represents a substructure in𝐺𝑖 and edges connect super nodes

by following the substructure connectivity in graph𝐺𝑖 . A two-level

graph encoding pipeline is designed over both 𝐺𝑖 and G𝑖 for learn-
ing graph-level representations that are enhanced by substructures.

Furthermore, substructure-preserving graph augmentations are de-

signed to preserve more information on task-agnostic substructures,

making OOD graphs with unseen substructure patterns easier to

detect. Specifically, given a graph 𝐺𝑖 , we augment it by first per-

forming dropping, sampling, and substitution on its super graph

G𝑖 and then mapping the changes to 𝐺𝑖 accordingly. In this way,

the substructures in𝐺𝑖 are modified as a whole. SGOOD is trained

using a combination of classification loss L𝐶𝐸 and contrastive loss

L𝐶𝐿 . In test time, given a test graph𝐺𝑖 , we first obtain graph-level

representations of both 𝐺𝑖 and its super graph G𝑖 , concatenate and
normalize the representations to compute the OOD score 𝑆 (𝐺𝑖).

3.1 Substructure-Enhanced Graph Encoding
Given a graph 𝐺𝑖 , we first describe how to get its super graph

G𝑖 of task-agnostic substructures, and then present a two-level

graph encoding pipeline to generate substructure-enhanced graph

representations.

As SGOOD utilizes task-agnostic substructures, we treat sub-

structure detection as a pre-processing step, and it is not our focus

on how to detect substructures. There exist off-the-shelf meth-

ods [4, 6] to detect task-agnostic substructures. By default, we

use modularity-based community detection [3]. We also test other

subgraph detection methods and find that the modularity-based

substructures are effective in SGOOD, as validated in Table 6.

Super Graph of Substructures. Let a substructure 𝑔𝑖, 𝑗 of graph
𝐺𝑖 be a connected subgraph of 𝐺𝑖 . Specifically, a subgraph 𝑔𝑖, 𝑗 =

(𝑉𝑖, 𝑗 , 𝐸𝑖, 𝑗) is a substructure of 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) iff 𝑉𝑖, 𝑗 ⊆ 𝑉𝑖 , 𝐸𝑖, 𝑗 ⊆ 𝐸𝑖 ,

and 𝑔𝑖, 𝑗 is connected. The substructures {𝑔𝑖, 𝑗 }𝑛𝑖𝑗=1 of a graph 𝐺𝑖

satisfy the following properties: (i) the node sets of substructures

are non-overlapping, (ii) the union of the nodes in all substructures

is the node set of 𝐺𝑖 , and (iii) every substructure is a connected

subgraph of𝐺𝑖 . Then we construct the super graph G𝑖 by regarding
every substructure 𝑔𝑖, 𝑗 as a super node in G𝑖 , and connect super

nodes by inserting edges via Definition 3.1. Super graph G𝑖 is a
higher-order view depicting the relationships between the substruc-

tures of a graph 𝐺 . We also add self-loops in super graph G𝑖 .

Definition 3.1 (A Super Graph of Substructures). A super graph

of substructures constructed from the input graph 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) is
denoted as G𝑖 = (V𝑖 , E𝑖), where every super node 𝑔𝑖, 𝑗 in node set

V𝑖 = {𝑔𝑖, 𝑗 }𝑛𝑖𝑗=1 represents a substructure of𝐺𝑖 , and every edge in E𝑖
connecting two super nodes, and the edge set E𝑖 = {(𝑔𝑖, 𝑗 , 𝑔𝑖,𝑘) |∃𝑢 ∈
𝑉𝑖, 𝑗 ∧ 𝑣 ∈ 𝑉𝑖,𝑘 , (𝑢, 𝑣) ∈ 𝐸𝑖 }.

Two-level Graph Encoding. Given a graph𝐺𝑖 and its super graph

G𝑖 , we present a two-level graph encoding pipeline, as shown in Fig-
ure 2. The idea is that, in addition to learning representations over

𝐺𝑖 , we further utilize the super graph G𝑖 to encode substructure

information into graph representations, to better preserve distin-

guishable substructure patterns for effective OOD detection. The

two-level graph encoding first adopts GNNs to learn node represen-

tations with initial features over graph𝐺𝑖 . For every node 𝑣 ∈ 𝑉𝑖 , its
representation h(𝑙+1)𝑣 at (𝑙 +1)-layer is obtained by Eq. (1). Different
GNNs have different aggregation and combination functions 𝑓AGGR,

𝑓COMB. By default, we adopt Graph Isomorphism Network (GIN)

[36] as the backbone. The GIN for 𝐺𝑖 has 𝐿1 layers.

h(𝑙+1)𝑣 = 𝑓
(𝑙+1)
COMB

(h(𝑙)𝑣 , 𝑓
(𝑙+1)
AGGR

(h(𝑙)𝑢 , 𝑢 ∈ 𝑁𝐺𝑖
(𝑣))), (1)

where h(𝑙)𝑣 ∈ R𝑑 is the intermediate representation of node 𝑣 from

the 𝑙-th layer GNNs with hidden dimension 𝑑 , 𝑓
(𝑙+1)
AGGR

is the function

that aggregates node features from 𝑣 ’s neighborhood 𝑁𝐺𝑖
(𝑣) in

graph𝐺𝑖 , 𝑓
(𝑙+1)
COMB

is the function that updates node 𝑣 ’s representation

by combining the representations of its neighbors with its own,

and initially h(0)𝑣 = x𝑣 .
Next, we obtain the representations of substructures 𝑔𝑖, 𝑗 in 𝐺𝑖

by leveraging the node representations above. As shown in Eq. (2),

given a node 𝑣 , we first concatenate all representations h(𝑙)𝑣 for 𝑙 =

1, ..., 𝐿1 using 𝑓CAT to get h𝑣 that preserves multi-scale semantics.

Then, for a substructure 𝑔𝑖, 𝑗 of graph𝐺𝑖 , we obtain the substructure

representation h(0)𝑔𝑖,𝑗 by integrating h𝑣 of all 𝑣 in 𝑔𝑖, 𝑗 via DeepSet
pooling [43] 𝑓POOL in Eq. (2).

h(0)𝑔𝑖,𝑗 = 𝑓POOL ({h𝑣 |𝑣 ∈ 𝑉𝑖, 𝑗 }), h𝑣 = 𝑓CAT ({h
(𝑙)
𝑣 }𝐿1

𝑙=1
) (2)

Note that h(0)𝑔𝑖,𝑗 only considers the nodes inside substructure 𝑔𝑖, 𝑗 and

the original graph topology𝐺𝑖 . To further consider the relationships

depicted in the super graph G𝑖 of substructures, we regard h(0)𝑔𝑖,𝑗 as

the initial features of super node 𝑔𝑖, 𝑗 in G𝑖 , and employ a 𝐿2-layer

GIN over G𝑖 to learn substructure-enhanced graph representations

by Eq. (3) and (4).

h(𝑙+1)𝑔𝑖,𝑗 = 𝑓
(𝑙+1)
COMB

(h(𝑙)𝑔𝑖,𝑗 , 𝑓
(𝑙+1)
AGGR

(h(𝑙)𝑔𝑖,𝑘 , 𝑔𝑖,𝑘 ∈ 𝑁G𝑖
(𝑔𝑖, 𝑗))), (3)

where 𝑁G𝑖
(𝑔𝑖, 𝑗) is the neighbors of super node 𝑔𝑖, 𝑗 in G𝑖 .

Lastly, in Eq. (4), we get the final representation h𝑔𝑖,𝑗 of every
super node 𝑔𝑖, 𝑗 by concatenating the representation of 𝑔𝑖, 𝑗 in every

layer of the 𝐿2-layer GIN, and obtain the graph representation hG𝑖

CIKM ’24, October 21–25, 2024, Boise, ID, USA Zhihao Ding et al.

by readout 𝑓OUT that is sum pooling.

hG𝑖
= 𝑓OUT ({h𝑔𝑖,𝑗 |𝑔𝑖, 𝑗 ∈ V𝑖 }), h𝑔𝑖,𝑗 = 𝑓CAT ({h

(𝑙)
𝑔𝑖,𝑗 }

𝐿2
𝑙=0

) (4)

Remark that the representation hG𝑖
of super graph G𝑖 of graph

𝐺𝑖 is used to train the loss L𝐶𝐸 for classification. Meanwhile, as

explained shortly, for OOD detection during testing, we further con-

sider another representation of graph 𝐺𝑖 obtained by aggregating

node representations. Existing studies, such as hierarchical pooling

[9, 18, 39] and subgraph GNNs [42, 46], learn task-specific sub-

structures for the graph classification task. On the other hand, we

leverage task-agnostic substructures. We conduct experiments to

demonstrate that our SGOOD is more effective than these methods

for graph-level OOD detection.

3.2 Substructure-Preserving Augmentations
Intuitively, if more information about task-agnostic substructures

in training ID graphs is preserved, it is easier to distinguish OOD

graphs with unseen substructure patterns. To achieve this, we de-

sign substructure-preserving graph augmentations by leveraging

the super graph G𝑖 of graph𝐺𝑖 , to improve the performance further.

However, it is challenging to achieve this. Substructures with subtle

differences have different semantics. It is important to keep the

substructures of a graph intact while performing augmentations.

Common augmentation techniques like edge permutation and node

dropping directly on graphs 𝐺𝑖 may unexpectedly destroy mean-

ingful substructures, and hamper OOD detection effectiveness.

To tackle the issue, we first perform augmentations on the super

graph G𝑖 by regarding substructures as atomic nodes, and then

map the augmentations to the original graph 𝐺𝑖 with modifica-

tions over substructures as a whole. Specifically, we propose three

substructure-level graph augmentations below, namely substruc-
ture dropping (SD), super graph sampling (SG), and substructure
substitution (SS). The default augmentation ratio is set to 0.3.

• Substructure Dropping (SD).Given a graph𝐺𝑖 with its super graph
G𝑖 , a fraction of super nodes in G𝑖 (i.e., the corresponding sub-

structures in𝐺𝑖) are discarded randomly. Remark that selected

substructures are dropped as a whole.

• Super Graph Sampling (SG). In the super graph G𝑖 , we start from
a random node, sample a fixed-size subgraph in G𝑖 , and drop the

rest nodes and edges. The changes are mapped to𝐺𝑖 accordingly.

Depth-first search is chosen as the sampling strategy [40].

• Substructure Substitution (SS). Given a graph𝐺𝑖 in class 𝑐 with su-

per graph G𝑖 of substructures, we randomly substitute a fraction

of nodes in G𝑖 (i.e., substructures in𝐺𝑖) with other substructures

from the graphs of the same class 𝑐 . To avoid drastic semantic

change of the whole graph, only super nodes with degree one

(excluding self-loops) in G𝑖 take part in the substitution.

3.3 Model Training and OOD Scoring
3.3.1 Two-stage model training. We adopt a cross-entropy loss

L𝐶𝐸 for classification. After getting representation hG𝑖
for the

super graph G𝑖 of graph 𝐺𝑖 , we apply a linear transformation to

get prediction logits 𝑦𝑖 , evaluated against the ground-truth class

label 𝑦𝑖 to get L𝐶𝐸 by Eq. (5) for a mini-batch of 𝐵 training graphs.

L𝐶𝐸 = − 1

𝐵

∑𝐵
𝑖=1

∑𝐶
𝑐=1 1(𝑦𝑖 = 𝑐) log

(
𝑦𝑖,𝑐

)
(5)

Then we adopt the substructure-preserving graph augmentations

in Section 3.2 to get contrastive loss L𝐶𝐿 . Specifically, given a

mini-batch of 𝐵 training graphs {𝐺𝑖 }𝐵𝑖=1 and their super graphs

{G𝑖 }𝐵𝑖=1, we transform the super graphs to get Ĝ𝑖,0 = T0 (G𝑖) and
Ĝ𝑖,1 = T1 (G𝑖), where T0 and T1 are two augmentations chosen

among A = {I, SD, SG, SS}, where I indicates no augmentation.

Graph 𝐺𝑖 is transformed accordingly via T0 and T1 to obtain 𝐺𝑖,0

and 𝐺𝑖,1 respectively. Then, the representations hĜ𝑖,0
and hĜ𝑖,1

of

the two augmented super graphs can be calculated by applying

Eq.(1)-(4). We transform hĜ𝑖,0
and hĜ𝑖,1

by a shared projection head

𝜓 (·), which is a 2-layer MLP, followed by 𝑙2-normalization, to ob-

tain uĜ𝑖,0
= 𝜓 (hĜ𝑖,0

)/| |𝜓 (hĜ𝑖,0
) | | and uĜ𝑖,1

= 𝜓 (hĜ𝑖,1
)/| |𝜓 (hĜ𝑖,1

) | |,
respectively. We get L𝐶𝐿 by

L𝐶𝐿 =
1

2𝐵

𝐵∑︁
𝑖=1

∑︁
𝑎∈{0,1}

− log

exp (u⊺
Ĝ𝑖,𝑎

uĜ𝑖,1−𝑎 /𝜏)∑𝐵
𝑗=1 1(𝑗 ≠ 𝑖)

∑
𝑘∈{0,1} exp (u⊺

Ĝ𝑖,𝑎
uĜ𝑗,1−𝑘

/𝜏)
,

(6)

where 𝜏 is a temperature parameter.

The overall loss combines of L𝐶𝐸 and L𝐶𝐿 , weighted by 𝛼 :

L = L𝐶𝐸 + 𝛼L𝐶𝐿 . (7)

The training procedure of SGOOD consists of two stages. In the

first pre-training stage, the parameters are solely updated by min-

imizing L𝐶𝐿 for 𝑇𝑃𝑇 epochs. In the second stage, the parameters

are fine-tuned under the combined overall loss L for 𝑇𝐹𝑇 epochs.

This training procedure achieves better performance than directly

training L, as shown in Figure 4 when pretraining 𝑇𝑃𝑇 is 0.

3.3.2 Graph-level OOD scoring. Recall that themain goal of SGOOD

is to let the representations of ID data and OOD data to be distant

from each other. Given a testing graph 𝐺𝑖 ∈ 𝐷𝑡𝑒𝑠𝑡 , we use the

standard Mahalanobis distance [19] to quantify its OOD score. If

𝐺𝑖 is with large Mahalanobis distance from the ID training data, it

tends to be OOD.

As shown in Figure 2, in addition to the representation hG𝑖
of

the super graph G𝑖 of a testing graph 𝐺𝑖 , SGOOD also aggregates

the node representations of 𝐺𝑖 to get h𝐺𝑖
= 𝑓OUT ({h𝑣 |𝑣 ∈ 𝑉𝑖 }).

Representations hG𝑖
and h𝐺𝑖

are concatenated together to estimate

the OOD score 𝑆 (𝐺𝑖):

𝑆 (𝐺𝑖) = max𝑐∈ [𝐶] (z𝑖 − 𝝁𝑐)⊺ Σ̂−1 (z𝑖 − 𝝁𝑐), z𝑖 =
𝑓
CAT

(h𝐺𝑖
,hG𝑖)

| |𝑓
CAT

(h𝐺𝑖
,hG𝑖) | |2

, (8)

where [𝐶] = {1, . . . ,𝐶}, 𝝁𝑐 and Σ̂ are the class centroid for class 𝑐

and covariance matrix of training ID graphs, respectively.

3.4 Theoretical Analysis
We analyze the expressive power of SGOOD (usingmessage-passing

GNNs as the backbone) in comparison to 1&2-WL, a key tool for

evaluating the expressivity of GNNs [36]. In Proposition 3.2, we

demonstrate that SGOOD is more expressive than 1&2-WL, en-

abling it to distinguish structural patterns beyond the capability

of 1&2-WL, and consequently, message-passing GNNs. The analy-

sis, together with our empirical findings in Section 1, explains the

power of SGOOD for graph-level OOD detection.

Proposition 3.2. When the GNNs adopted in SGOOD are with
sufficient number of layers, and the 𝑓POOL function in Eq.(2) and 𝑓OUT

SGOOD: Substructure-enhanced Graph-Level Out-of-Distribution Detection CIKM ’24, October 21–25, 2024, Boise, ID, USA

function in Eq.(4) are injective, then SGOOD is strictly more expressive
than 1&2-WL.

Proof. We first prove that SGOOD is at least as powerful as 1&2-

WL in Lemma 3.3. Then, we prove that SGOOD can distinguish

2-regular graphs that 1&2-WL cannot distinguish in Lemma 3.5.

Combining these two Lemmas, we prove that SGOOD is strictly

more expressive than 1&2-WL. □

Lemma 3.3. For graphs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) identified
as non-isomorphic by 1&2-WL, SGOOD projects them into different
representations hG1

and hG2
in Eq. (4).

Proof. Let H𝐺
1

= {h𝑣 |𝑣 ∈ 𝑉1} and H𝐺
2

= {h𝑣 |𝑣 ∈ 𝑉2} be the
multisets of node representations of𝐺1 and𝐺2 generated by GIN

in Eq. (2), respectively. Let G1 = (V1, E1) and G2 = (V2, E2) be the
super graphs of 𝐺1 and 𝐺2 respectively. We consider two cases: (1)

|V1 | ≠ |V2 |, (2) |V1 | = |V2 |.
For case (1), G1 and G2 are two graphs with different number of

nodes. Thus, G1 and G2 can be easily determined as non-isomorphic

by 1&2-WL. It is proved that GIN with sufficient number of layers

and all injective functions is as powerful as 1&2-WL [36]. As GIN

is adopted in SGOOD as GNN backbone with sufficient number of

layers and 𝑓OUT function in Eq.(4) is injective, representations hG1

and hG2
generated by SGOOD are different.

For case (2), let |V1 | = |V2 | = 𝐾 , H G
1

= {h(0)𝑔1, 𝑗 |𝑔1, 𝑗 ∈ V1} and
H G

2
= {h(0)𝑔2, 𝑗 |𝑔2, 𝑗 ∈ V2} be the multisets of initial node represen-

tations of G1 and G2 calculated by Eq.(2), respectively. Using GIN

with sufficient number of layers, we get H𝐺
1

≠ H𝐺
2

[36]. As stated

in Section 3.1, the substructures {𝑔𝑖, 𝑗 }𝑛𝑖𝑗=1 of a graph 𝐺𝑖 satisfy the

following properties: (i) the substructures are non-overlapping, (ii)

the union of nodes in all substructures is the node set of 𝐺𝑖 . Thus,

{{h𝑣 |𝑣 ∈ 𝑔1, 𝑗 }}𝐾𝑗=1 (resp. {{h𝑣 |𝑣 ∈ 𝑔2, 𝑗 }}𝐾𝑗=1) is a partition of H𝐺
1

(resp.H𝐺
2
). Then, we have {{h𝑣 |𝑣 ∈ 𝑔1, 𝑗 }}𝐾𝑗=1 ≠ {{h𝑣 |𝑣 ∈ 𝑔2, 𝑗 }}𝐾𝑗=1.

As 𝑓POOL function in Eq.(2) is injective, we have {𝑓POOL ({h𝑣 |𝑣 ∈
𝑔1, 𝑗 })}𝐾𝑗=1 ≠ {𝑓POOL ({h𝑣 |𝑣 ∈ 𝑔2, 𝑗 })}𝐾𝑗=1, that is H

G
1

≠ H G
2
. As

GIN and 𝑓OUT function in Eq.(4) are both injective, we derive that

hG1
and hG2

generated onH G
1

andH G
2

are different.

Combining cases (1) and (2), we prove Lemma 3.3. □

Next, we prove that SGOOD can distinguish 𝑛-node 2-regular

graphs that 1&2-WL cannot distinguish in Lemma 3.5. Before that,

we first give the definition of 2-regular graphs. Note that we only

consider undirected graphs in this paper.

Definition 3.4 (2-regular graph). A graph is said to be regular of

degree 2 if all local degrees are 2.

Lemma 3.5. Given two non-isomorphic 𝑛-node 2-regular graphs 𝐺1

and𝐺2 that 1&2-WL cannot distinguish, SGOOD projects them into
different graph representations hG1

and hG2
in Eq. (4).

Proof. Based on the definition of a 2-regular graph, 𝐺1 and

𝐺2 consist of one or more disconnected cycles. Let 𝑟1 and 𝑟2 be

the number of cycles in 𝐺1 and 𝐺2. Let G1 = (V1, E1) and G2 =

(V2, E2) be the constructed super graphs of𝐺1 and𝐺2. We consider

two cases: (1) 𝑟1 ≠ 1∧𝑟2 ≠ 1, (2) (𝑟1 = 1∧𝑟2 ≠ 1)∨ (𝑟1 ≠ 1∧𝑟2 = 1).
For case (1), 𝐺1 and 𝐺2 consist of disconnected circles. As G1

and G2 are constructed by modularity-based community detection

Table 2: Data Statistics.
Dataset OOD Type # Class # ID Train # ID Val # ID Test # OOD Test

ENZYMES [27] Unseen Classes 6 480 60 60 60

IMDB-M [27] Unseen Classes 3 1200 150 150 150

IMDB-B [27] Unseen Classes 2 800 100 100 100

REDDIT-12K [37] Unseen Classes 11 6997 875 875 875

BACE [35] Scaffold 2 968 121 121 121

BBBP [35] Scaffold 2 1303 164 164 164

DrugOOD [15] Protein Target 2 800 100 100 100

HIV [35] Scaffold 2 26319 3291 3291 3291

method [3], in Lemma 3.4 of [2], for graphs of disconnected circles,

there is always a clustering with maximum modularity, in which

each cluster consists of a connected subgraph. As a result, ∀𝑔1, 𝑗 ∈
V1 is a circle in 𝐺1, and |V1 | = 𝑟1. Similarly, ∀𝑔2, 𝑗 ∈ V2 is a circle

in 𝐺2, and |V2 | = 𝑟2. Let N1 = {|𝑉1, 𝑗 |} |V1 |
𝑗=1

and N2 = {|𝑉2, 𝑗 |} |V2 |
𝑗=1

.

Since𝐺1 and𝐺2 are non-isomorphic, we have ∃𝑛1, 𝑗 ∈ N1 : ∀𝑛2, 𝑗 ∈
N2, 𝑛1, 𝑗 ≠ 𝑛2, 𝑗 . As a result, we have N1 ≠ N2. Then, we have

{{h𝑣 |𝑣 ∈ 𝑉1, 𝑗 }} |V1 |
𝑗=1

≠ {{h𝑣 |𝑣 ∈ 𝑉2, 𝑗 }} |V2 |
𝑗=1

. As 𝑓POOL function in

Eq.(2) is injective, we have H G
1

= {𝑓POOL ({h𝑣 |𝑣 ∈ 𝑔1, 𝑗 })} |V1 |
𝑗=1

,

H G
2

= {𝑓POOL ({h𝑣 |𝑣 ∈ 𝑔2, 𝑗 })} |V2 |
𝑗=1

, and H G
1

≠ H G
2
. As shown in

the proof of Lemma 3.3, we have hG1
and hG2

generated on H G
1

andH G
2

are different.

For case (2), we consider 𝑟1 = 1 ∧ 𝑟2 ≠ 1, and the proof when

𝑟2 = 1 ∧ 𝑟1 ≠ 1 is similar. 𝐺1 consists of one single circle, and 𝐺2

consists of 𝑟2 disconnected circles. For 𝐺2 and G2, ∀𝑔2, 𝑗 ∈ V2 is a

circle in 𝐺2, and |V2 | = 𝑟2 following the conclusion in case (1). For

𝐺1 andG1, we consider two cases: (i) |V1 | = 𝑟1 = 1, and (ii) |V1 | > 1.

For case (i), V1 = {𝑔1,1}, where 𝑔1,1 = 𝐺1. Let N1 = {|𝑉1, 𝑗 |} |V1 |
𝑗=1

=

{|𝑉1,1 |} and N2 = {|𝑉2, 𝑗 |} |V2 |
𝑗=1

. As |N1 | ≠ |N2 |, we have N1 ≠ N2.

Similar to case (1), we conclude that graph representations hG1

and hG2
generated on H G

1
and H G

2
are different. For case (ii),

V1 = {𝑔1, 𝑗 } |V1 |
𝑗=1

, where ∀𝑔1, 𝑗 ∈ V1 is a chain and two nearby chain

are connected in G1, i.e., G1 is a |V1 |-circle while G2 consists of

|V2 | isolated nodes. Thus, G1 and G2 can be distinguished as non-

isomorphic by 1&2-WL. By [36], when we encode G1 and G2 by Eq.

(3) with sufficient layers of GIN, and generate hG1
and hG2

by Eq.

(4), where 𝑓OUT is injective, hG1
and hG2

are different. Combining

cases (i) and (ii), we prove SGOOD generates different hG1
and hG2

for 𝐺1 and 𝐺2 in case (2).

Combining cases (1) and (2), we prove Lemma 3.5. □

4 Experiments
We evaluate SGOOD in graph-level OOD detection against 11 base-

line methods across 8 real-world datasets.

4.1 Experimental Setup
4.1.1 Datasets. We adopt real-world datasets that encompass di-

verse types of OOD graphs, as listed in Table 2. These datasets are cu-

rated from mainstream graph classification benchmarks [15, 27, 35]

into OOD detection scenarios. The OOD graph data is generated

following [21, 24]. All ID graphs are randomly split into training,

validation, and testing with ratio 8:1:1, following the settings of

standard graph classification [14, 27]. The testing set consists of

the same number of ID graphs and OOD graphs.

CIKM ’24, October 21–25, 2024, Boise, ID, USA Zhihao Ding et al.

Table 3: Overall OOD detection performance by AUROC, AUPR, and FPR95 in percentage % (mean ± std). ↑ indicates larger
values are better and vice versa. Bold: best. Underline: runner-up.

Method

ENZYMES IMDB-M IMDB-B REDDIT-12K

AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓
MSP 61.34±3.79 61.65±6.64 89.67±2.26 42.75±1.52 51.04±1.93 95.73±1.63 58.13±2.31 59.63±1.22 91.40±4.16 50.63±0.87 48.60±1.08 95.95±1.25

Energy 54.69±9.18 56.90±8.85 89.33±3.55 24.50±19.73 37.26±11.78 96.40±2.25 49.58±17.76 59.03±13.06 92.80±3.55 55.10±0.48 56.52±0.78 97.19±0.58

ODIN 63.70±2.70 65.72±4.77 92.66±3.26 40.12±2.96 50.08±2.44 96.66±1.03 58.25±2.94 61.36±0.49 92.20±2.92 51.74±2.03 54.53±1.26 96.45±0.73

MAH 67.37±3.67 63.81±2.15 83.33±9.60 69.26±3.67 63.64±2.14 60.93±9.06 76.77±4.37 76.88±6.30 81.40±7.14 72.68±0.87 74.47±0.48 80.75±2.05

GNNSafe 56.85±8.91 56.13±8.26 97.00±3.71 21.93±1.76 36.88±1.68 95.46±1.42 70.49±14.80 75.67±15.71 87.80±5.81 51.68±0.08 53.97±0.52 95.59±2.80

GraphDE 61.35±3.99 66.26±2.98 99.00±0.81 66.87±4.25 62.60±4.47 93.06±8.24 26.91±3.35 42.73±2.06 100.00±0.00 59.40±0.18 63.06±0.30 81.82±0.01

GOOD-D 67.21±6.41 64.86±6.32 82.33±8.31 61.89±4.87 66.91±7.60 95.20±4.55 52.58±10.21 55.69±10.56 99.20±1.00 56.11±0.10 59.56±0.16 93.67±0.34

AAGOD 69.25±4.65 65.02±4.41 82.78±2.83 70.76±5.48 68.15±4.45 81.56±22.32 72.51±1.11 67.86±4.79 86.33±4.03 60.25±2.16 61.44±1.61 92.53±1.55

OCGIN 68.11±4.61 68.90±4.19 89.67±3.70 47.51±9.47 50.76±4.53 98.27±17.70 60.78±5.21 57.80±5.10 8780±9.15 59.33±1.26 60.02±1.88 90.00±2.01

GLocalKD 71.46±3.21 64.93±4.44 78.67±6.37 19.82±1.57 35.39±0.49 98.27±1.13 79.39±4.71 85.56±3.33 87.40±5.42 49.60±1.06 51.75±0.72 97.60±0.35

OGGTL 73.22±1.83 73.61±3.19 82.33±2.70 54.07±12.93 58.20±7.86 86.40±6.49 37.39±18.82 47.11±14.06 98.80±2.40 51.62±0.019 53.33±0.01 96.79±0.06

SGOOD 74.40±1.42 72.53±2.51 73.66±7.03 78.84±2.00 72.54±3.21 45.46±6.62 80.41±3.16 83.49±3.59 81.20±2.28 74.95±0.79 74.93±0.93 75.17±2.72

Method

BACE BBBP DrugOOD HIV

AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓
MSP 46.34±6.10 48.65±3.08 97.02±2.18 57.37±4.28 56.84±3.36 94.63±2.26 52.86±5.26 54.49±4.33 98.80±0.01 50.75±1.88 50.49±0.91 95.52±0.50

Energy 46.05±6.66 49.68±4.16 97.36±2.92 56.56±4.16 55.74±2.78 92.68±2.62 52.81±5.36 54.98±4.36 98.20±1.16 50.97±2.13 50.49±0.91 95.50±0.59

ODIN 45.51±3.85 48.28±3.76 97.02±1.53 54.78±3.46 54.63±3.69 96.34±1.80 51.09±3.79 52.70±2.66 99.00±1.09 50.16±0.73 49.95±0.58 94.60±1.07

MAH 73.78±1.97 75.33±2.32 86.78±6.32 53.77±4.27 52.57±3.81 93.29±2.51 66.90±4.14 64.30±4.43 81.60±4.58 58.10±3.60 57.18±3.18 91.89±1.32

GNNSafe 47.61±7.50 51.52±5.91 98.18±2.05 47.04±2.40 51.52±5.90 98.41±0.99 50.44±0.57 51.14±0.30 96.01±0.33 50.98±6.82 55.13±6.81 96.01±0.33

GraphDE 47.32±1.52 51.1±2.57 94.21±4.58 50.88±2.78 51.47±3.84 94.63±2.34 60.19±4.32 62.59±2.47 88.80±5.60 52.38±1.86 54.14±3.21 94.89±0.84

GOOD-D 70.42±2.22 73.21±3.34 88.26±1.78 54.15±1.10 58.58±1.93 99.39±0.41 60.52±3.33 63.09±2.54 98.40±1.27 59.69±0.62 57.10±.14 92.03±0.61

AAGOD 71.41±2.37 71.82±1.72 90.63±1.95 58.16±1.54 59.35±1.32 93.5±0.76 60.29±3.23 66.2±3.36 95.33±0.47 55.72±0.69 54.29±0.51 92.2±0.3

OCGIN 59.71±5.20 61.43±5.18 93.39±4.44 47.78±5.72 47.27±2.98 94.76±2.70 57.95±5.80 59.50±7.00 94.20±3.12 54.06±0.47 52.14±0.26 92.81±1.01

GLocalKD 45.34±2.11 55.39±2.35 98.68±1.11 43.77±2.23 45.84±1.20 98.29±1.00 45.72±0.97 50.90±3.33 100.00±0.00 46.81±2.90 46.95±2.01 97.05±0.19

OGGTL 80.84±2.00 79.93±1.26 66.44±8.89 58.73±2.19 60.47±1.38 91.46±2.21 67.59±7.93 70.90±5.80 83.00±11.22 51.78±0.19 53.71±0.22 96.41±0.05

SGOOD 84.39±2.73 83.32±2.49 64.13±4.83 61.25±1.60 59.36±2.39 88.04±3.44 73.15±4.48 73.25±4.49 67.40±5.16 60.82±0.75 59.99±0.69 90.39±1.04

• ENZYMES comprises protein networks representing enzymes.

’Non-enzymes’ protein networks from the PROTEINS dataset

[27] are introduced as OOD.

• IMDB-M includes social networks categorized into three classes.

We designate social networks from the IMDB-B dataset [27],

labeled with ‘Action’, as OOD graphs, noting that the ‘Action’

class is absent in IMDB-M.

• IMDB-B regards graphs labeled as ‘Comedy’ and ‘Sci-Fi’ in

IMDB-M as OOD graphs, as these classes are absent in IMDB-B.

• REDDIT-12K is a large-scale social network dataset [37]. Graphs

in the dataset REDDIT-BINARY [37], which are social networks

with classes different from REDDIT-12K, are introduced as OOD.

• BACE consists of molecules for property prediction. In our adap-

tation for OOD detection, we use the training set of the original

BACE as ID graphs. OOD graphs are introduced by incorporat-

ing graphs from the provided test set, wherein molecules exhibit

scaffolds distinct from those present in training set.

• BBBP is constructed similarly to BACE. OOD graphs have molec-

ular scaffolds different from ID graphs.

• DrugOOD is a curated OOD dataset consisting of various molec-

ular graphs. We use the provided curator to generate both ID and

OOD graphs that have different protein targets.

• HIV is a large-scale molecular graph dataset [35]. Graphs with

scaffolds different from ID graphs are regarded as OOD.

4.1.2 Baselines. We compare with 11 competitors in 3 categories.

• General OOD detection methods, including MSP [13], En-

ergy [23], ODIN [22], and MAH [19]. MSP, Energy, and ODIN

estimate OOD scores directly from classification logits at test time.

MSP uses the maximum softmax score as OOD score while En-

ergy uses energy function. ODIN combines temperature scaling

with gradient-based input perturbations to enlarge the differences

between OOD and ID samples. MAH measures Mahalanobis dis-

tance between test samples and ID training data.

• Graph-level OODdetectionmethods, including GNNSafe [33],
GraphDE [21], GOOD-D [24] and AAGOD [10]. GNNSafe incor-

porates GNNs in the energy model and detects OOD samples

using energy scores. In our paper, we use graph labels to di-

rectly run the basic version of GNNSafe from its Section 3.1 [33].

GraphDE is a probabilistic model-based approach developed for

debiased learning and OOD detection in graph data. GOOD-D is

an unsupervised OOD detection method that adopts contrastive

learning to capture latent patterns of ID graphs. AAGOD is a

post-hoc framework that adopts an adaptive amplifier to enlarge

the gap between OOD and ID graphs.

• Graph-level anomaly detection methods, including OCGIN
[45], OCGTL [28], and GLocalKD [25]. OCGIN combines deep

one-class classification with GIN [36] to detect outlier graphs

at test time. OCGTL develops a one-class objective for graph

anomaly detection. GLocalKD leverages knowledge distillation

to detect both local and global graph anomalies.

4.1.3 Evaluation and Implementation. Following [24, 33], all meth-

ods are trained using ID training set and evaluated their OOD

detection performance and ID classification performance in the test

SGOOD: Substructure-enhanced Graph-Level Out-of-Distribution Detection CIKM ’24, October 21–25, 2024, Boise, ID, USA

Table 4: ID graph classification performance measured by
average ID ACC (in percentage %). / indicates that ID ACC is
not applicable for unsupervised methods.

Method ENZYMES IMDB-M IMDB-B REDDIT-12K BACE BBBP HIV DrugOOD

MSP 37.33 48.27 69.80 48.91 80.83 87.44 96.62 79.20

Energy 37.33 48.27 69.80 48.91 80.83 87.44 96.62 79.20

ODIN 37.33 48.27 69.80 48.91 80.83 87.44 96.62 79.20

MAH 37.33 48.27 69.80 48.91 80.83 87.44 96.62 79.20

GNNSafe 17.66 30.13 50.20 27.42 56.69 79.14 96.58 64.40

GraphDE 46.00 37.86 69.80 40.68 77.68 88.90 96.20 77.00

GOOD-D / / / / / / / /

AAGOD / / / / / / / /

SGOOD 48.66 48.66 71.60 51.82 80.33 89.14 96.66 79.40

Table 5: Ablation AUROC (%)

Method ENZYMES IMDB-M IMDB-B BACE BBBP DrugOOD

Best baseline 71.46 69.26 79.39 73.78 57.37 57.37

SGOOD (base) 67.38 69.26 76.80 73.78 53.77 66.90

SGOOD\A 73.60 75.22 77.80 75.96 57.84 68.80

SGOOD 74.41 78.84 80.42 84.40 61.25 73.16

set. Hyperparameters are tuned using ID graphs from the valida-

tion set. All methods are evaluated five times on each dataset, and

the reported performance metrics are based on the mean and stan-

dard deviation results on the test set. We use three commonly used

metrics AUROC, AUPR and FPR95 for OOD detection evaluation

[13, 33]. For the classification performance in ID graphs, we use

Accuracy (ID ACC). Remark that the priority of the graph-level

OOD detection task is to accurately identify OOD graphs, instead

of improving the ID ACC. For SGOOD, we set the number of lay-

ers 𝐿1 = 3 and 𝐿2 = 2, and dimension 𝑑 as 16. We set batch size

128. Training consists of 100 epochs for pre-training (𝑇𝑃𝑇) and 500

epochs for fine-tuning (𝑇𝐹𝑇). We experiment with learning rates

in the range {0.01, 0.001, 0.0001} for the initial stage, and set the

learning rate to 0.001 and 𝛼 to 0.1 for the refinement stage. For

all baselines, we use the suggested parameters from their papers

or obtained by grid search. Experiments are conducted on a Linux

server equipped with an Nvidia RTX 3090 GPU card.

4.2 Overall Performance
OOD detection performance. Table 3 reports the overall graph-
level OOD detection performance of all methods by AUROC, AUPR

and FPR95 metrics on all datasets, by mean and standard deviation

values. Observe that SGOOD consistently achieves superior OOD

detection effectiveness under most settings. For instance, on IMDB-

M, SGOOD has AUROC 78.84%, which indicates 9.58% absolute

improvement over the best competitor with AUROC 69.26%. As

another example on BACEmolecule dataset, the AUROC of SGOOD

is 84.39%, while the runner-up achieves AUROC 80.84%. The overall

results in Table 3 show that SGOOD effectively encode task-agnostic

substructures into expressive representations for graph-level OOD

detection, validating the power of our technical designs.

4.3 Model Analysis
ID graph classification performance. Table 4 reports the per-
formanc on ID graph classification of all methods by Accuracy (ID

0 200
OOD score

0.0

0.5

1.0

Fr
eq

ue
nc

y

1e 2 SGOOD (base)

0 200
OOD score

0.0

2.5

5.0
1e 3 SGOOD\A

0 200
OOD score

0

2

4

1e 3 SGOOD
ID OOD

Figure 3: ID and OOD score distributions, with the dotted
line indicating the mean of ID/OOD scores.

Table 6: Comparison between different substructure detec-
tion methods by AUROC (%).

SGOOD ENZYMES IMDB-M IMDB-B BACE BBBP DrugOOD

w.o. substructures 67.38 69.26 76.8 73.78 53.77 66.90

Modularity 74.41 78.84 80.42 84.40 61.25 73.16
Graclus 71.12 74.64 78.86 79.54 56.62 67.94

LP 68.09 75.48 78.46 76.63 54.90 68.95

BRICS / / / 78.39 60.18 64.78

Table 7: Comparing with subgraph-aware models AUROC (%).
Bold: best. Underline: runner-up.

Method ENZYMES IMDB-M IMDB-B BACE BBBP DrugOOD

SAG 70.40 76.50 77.30 76.90 58.90 65.80

TopK 70.20 76.80 77.20 74.20 54.90 58.50

DiffPool 73.30 75.90 78.00 76.50 57.50 70.60

NGNN 70.30 71.20 76.60 71.20 52.60 75.60
GNN-AK

+
68.50 73.50 77.20 70.90 54.30 63.00

SGOOD 74.41 78.84 80.42 84.40 61.25 73.16

ACC). The results of graph-level anomaly detection methods are not

reported as ID ACC is not applicable. SGOOD achieves the best ID

ACC on 7 out of 8 datasets. For instance, on ENZYMES, SGOOD has

ID ACC 48.66%, while the ID ACC of the best competitor GraphDE

is 46.00%, indicating a relative improvement of 5.8%. On REDDIT-

12K, a large-scale dataset with 11 ID classes, SGOOD has ID ACC

51.82%, outperforming the best competitor by a relative improve-

ment of 5.9%. The results indicate that leveraging substructures

benefits both OOD detection and graph classification.

Ablation Study. In Table 5, SGOOD\A is SGOOD that ablates all

augmentations in Section 3.2, i.e., 𝛼=0 in Eq. (7); SGOOD (base) fur-

ther ablates all substructure-related representations in Section 3.1.

In Table 5, first observe that, from SGOOD (base) to SGOOD\A and

then to the complete version SGOOD, the performance gradually

increases on all datasets, validating the effectiveness of all proposed

techniques. Second, SGOOD\A already surpasses the best baseline

performance on most datasets, which demonstrates the effect of

the techniques in Section 3.1, without the augmentation techniques

in Section 3.2. With the help of the substructure-preserving graph

augmentations, SGOOD pushes the performance further higher.

In Figure 3, we visualize the ID and OOD score distributions of

SGOOD (base), SGOOD\A and SGOOD on DrugOOD, with their

mean scores shown in dotted lines. Clearly, we are obtaining more

separable OOD scores against ID data from left to right in Figure

3, which demonstrates that our techniques in SGOOD can learn

distinguishable representations for ID and OOD graphs.

CIKM ’24, October 21–25, 2024, Boise, ID, USA Zhihao Ding et al.

Effect of Task-agnostic Substructure Detection Methods. As
mentioned, SGOOD is orthogonal to specific substructure extrac-

tion methods. Here in SGOOD, we evaluate several commonly-used

methods to extract substructures, including Graclus [6], label propa-

gation (LP) [4], and BRICS [5]. BRICS uses chemistry knowledge for

extraction. In Table 6, SGOOD with different substructure detection

methods are all better than SGOOD w.o. substructures, and SGOOD
with Modularity is the best. The results validate the effectiveness

of SGOOD that leverages substructures for OOD detection.

Comparison with Task-specific Subgraph Models. We then

compare SGOOD directly with subgraph GNN models, including

three hierarchical pooling methods (SAG [18], TopK [9], DiffPool

[39]) and two subgraph GNNs (NGNN [42] and GNN-AK
+
[46]).

Note that these methods are not specifically designed for graph-

level OOD detection. At test time, we extract the graph representa-

tions generated by these methods and use Mahalanobis distance as

OOD score. Table 7 reports the AUROC results. SGOOD performs

best on 5 out of 6 datasets and is the top-2 on DrugOOD. This

validates the effectiveness of our substructure-related techniques

in Section 3 for graph-level OOD detection.

Effect of Augmentations. We evaluate the augmentations (SD,

SG, and SS) in Section 3.2, with conventional graph augmentations

that are not substructure-preserving, including edge perturbation

(EP), attribute masking (AM), node dropping (ND), and subgraph

sampling (SA). Table 8 reports the results, AM is not applicable

on IMDB-M and IMDB-B since they do not have node attributes.

Observe that our SD, SG, and SS are the top-3 ranked techniques

for graph-level OOD detection, validating the effectiveness of the

proposed substructure-preserving graph augmentations. In Appen-

dix Figure 6, we also visualize the improvements of all pairwise

combinations of our augmentation techniques.

Performance under Different Backbones. We evaluate SGOOD

and competitors when changing the GIN backbone to GCN [17] and

GraphSage [12]. Table 9 reports the results. With GCN backbone,

compared with the baselines, SGOOD consistently achieves the best

scores; with GraphSage backbone, SGOOD is the best on BACE,

BBP, DrugOOD, and the second best on other datasets. The results

validate the robustness of SGOOD to different backbones.

Model efficiency. We compare the training time per epoch in

seconds of all methods, with results in Table 10. Compared with

other graph-level OOD detection competitors, including GraphDE,

GOOD-D, and AAGOD, SGOOD requires less time to train. Com-

pared with all methods, including the methods originally designed

for image data, SGOOD requires moderate time for training. Con-

sidering together the time cost in Table 10 and the effectiveness in

Table 3, we can conclude that SGOOD is effective and efficient for

graph-level OOD detection,

4.4 Parameter Sensitivity
In this section, we evaluate the performance of SGOOD under

varying hyperparameters to test its robustness and sensitivity to

parameter settings.

Varying pretraining epochs 𝑇𝑃𝑇 . We conduct experiments to

study the effect of pretraining epochs 𝑇𝑃𝑇 from 0 to 200. As shown

in Figure 4, compared to SGOOD without first-stage pretraining

Table 8: Comparingwith different augmentations byAUROC.

ENZYMES IMDB-M IMDB-B BACE BBBP DrugOOD Avg. Rank

EP 74.28 76.50 78.44 78.75 58.24 71.32 4.67

AM 72.44 / / 77.28 59.68 71.27 5.25

ND 73.11 77.09 78.40 78.79 58.59 69.48 4.83

SA 72.12 76.76 79.25 77.13 57.84 72.66 4.83

SD 74.77 78.15 79.54 82.00 59.76 72.65 1.83
SG 72.74 77.98 78.97 82.24 59.58 71.97 3.33

SS 74.27 76.20 80.50 83.53 63.53 71.94 2.67

Table 9: Performance with different backbones by AUROC
(%). Bold: best. Underline: runner-up.

Backbone Method ENZYMES IMDB-M IMDB-B BACE BBBP DrugOOD

GCN

MAH 70.04 71.27 53.46 72.68 54.97 66.01

GraphDE 61.40 68.44 29.13 53.24 52.50 56.61

GOOD-D 41.96 61.71 59.53 72.52 58.91 61.79

OCGIN 64.35 57.46 64.08 67.54 51.23 59.30

SGOOD 71.26 73.52 65.91 83.42 62.76 72.52

GraphSage

MAH 68.07 48.06 43.63 73.60 53.88 64.55

GraphDE 61.37 69.65 28.28 53.24 52.50 56.66

GOOD-D 45.55 57.02 23.90 73.15 56.85 61.57

OCGIN 71.75 36.86 71.44 57.47 46.65 63.82

SGOOD 70.21 68.63 61.59 82.22 59.50 68.60

Table 10: Training time per epoch of all methods on all
datasets by seconds (s).

Method ENZYMES IMDB-M IMDB-B REDDIT-12K BACE BBBP HIV DrugOOD

MSP 0.119 0.077 0.090 0.890 0.053 0.055 2.740 0.078

Energy 0.119 0.077 0.090 0.890 0.053 0.055 2.740 0.078

ODIN 0.119 0.077 0.090 0.890 0.053 0.055 2.740 0.078

MAH 0.119 0.077 0.090 0.890 0.053 0.055 2.740 0.078

GraphDE 1.692 1.175 1.392 176.400 0.950 0.696 43.770 1.020

GOOD-D 0.257 0.171 0.197 17.550 0.157 0.095 5.160 0.230

AAGOD 0.234 0.269 0.404 5.927 0.380 0.681 14.000 0.310

OCGIN 0.123 0.079 0.086 1.650 0.075 0.044 2.900 0.099

GLocalKD 0.072 0.203 0.054 142.000 0.052 0.035 4.220 0.067

SGOOD 0.161 0.138 0.137 0.980 0.085 0.058 3.970 0.124

0 50 100 200

70

75

A
U

R
O

C
 (%

) ENZYMES

0 50 100 200

75

80

A
U

R
O

C
 (%

) IMDB-M

0 50 100 200
75

80

A
U

R
O

C
 (%

) IMDB-B

0 50 100 200
75

80

85

A
U

R
O

C
 (%

) BACE

0 50 100 200
60.0

62.5

A
U

R
O

C
 (%

) BBBP

0 50 100 200

70

75

A
U

R
O

C
 (%

) DrugOOD

Figure 4: OOD detection performance of SGOOD by AUROC
(%) when the number of pretraining epochs 𝑇𝑃𝑇 varies from
0 to 200, with colored area representing standard deviation.

(𝑇𝑃𝑇 = 0), pretraining improves SGOOD’s performance. We also

found that excessive pretraining can sometimes have negative ef-

fects. For example, when 𝑇𝑃𝑇 = 200, SGOOD’s performance de-

crease on all datasets except ENZYMES. We speculate the reason is

that excessive pretraining makes task-agnostic information domi-

nate, with a negative impact on the SGOOD’s ability to learn from

class labels. As 𝑇𝑃𝑇 = 100 generally leads to competitive perfor-

mance across all datasets, we set the default value of 𝑇𝑃𝑇 to 100.

SGOOD: Substructure-enhanced Graph-Level Out-of-Distribution Detection CIKM ’24, October 21–25, 2024, Boise, ID, USA

0.1 0.2 0.3 0.4
70
72
75
77

A
U

R
O

C
 (%

) ENZYMES

0.1 0.2 0.3 0.4

76
78
80

A
U

R
O

C
 (%

) IMDB-M

0.1 0.2 0.3 0.4
75
77
80
82

A
U

R
O

C
 (%

) IMDB-B

0.1 0.2 0.3 0.4
78
80
82
84
86

A
U

R
O

C
 (%

) BACE

0.1 0.2 0.3 0.4
58
60
62
64

A
U

R
O

C
 (%

) BBBP

0.1 0.2 0.3 0.4
65

70

75

A
U

R
O

C
 (%

) DrugOOD

Figure 5: OOD detection results of SGOOD by AUROC (%)
when the weight of the contrastive loss 𝛼 varies from 0 to 1,
with the colored area representing standard deviation.

I
SD SG SS

ENZYMES

I
SD

SG
SS

0.7 1.5 -0.6 1

1.5 1 0.8 1.1

-0.6 0.8 -0.1 0.8

1 1.1 0.8 0.2
I

SD SG SS
IMDB-MULTI

0
1

2
3

-2.1 2.8 2.6 0.8

2.8 2.1 2.8 3.4

2.6 2.8 0.4 2

0.8 3.4 2 1.3
I

SD SG SS
IMDB-BINARY

0
1

2
3

0.2 2 1.4 3

2 -0.4 1.2 1

1.4 1.2 0.8 0.8

3 1 0.8 2.9

I
SD SG SS
BACE

I
SD

SG
SS

-1.8 4.1 4.3 5.6

4.1 4.5 3.5 2.5

4.3 3.5 6.5 5.1

5.6 2.5 5.1 5.1
I

SD SG SS
BBBP

0
1

2
3

3.6 1.4 1.2 5

1.4 1.2 2.2 3.2

1.2 2.2 4 2.8

5 3.2 2.8 4.4
I

SD SG SS
DrugOOD

0
1

2
3

0.3 1.3 0.6 0.5

1.3 2.6 1.5 1.8

0.6 1.5 -2.3 -0

0.5 1.8 -0 0.1

Figure 6: AUROC gain (%) of SGOOD compared with
SGOOD\A without graph augmentations.

Table 11: Varying 𝐿1 and 𝐿2 in SGOOD (AUROC).

𝐿1 𝐿2 ENZYMES IMDB-M IMDB-B BBBP BACE DrugOOD

4 1 74.00 77.13 81.00 80.43 62.00 71.17

3 2 74.41 78.84 80.42 84.40 61.25 73.16
2 3 73.63 76.03 79.05 80.34 62.26 69.12

1 4 74.22 77.83 76.79 76.62 61.08 68.01

Varying the weight of contrastive loss 𝛼 .We vary 𝛼 from 0 to

1 to study the effect. As shown in Figure 5, compared to SGOOD

fine-tuned solely byL𝐶𝐸 (i.e., 𝛼 = 0), fine-tuning SGOODwith both

L𝐶𝐸 and L𝐶𝐿 generally leads to better performance. As 𝛼 = 0.1

usually leads to competitive performance across all datasets, we set

the default value of 𝛼 to 0.1 in SGOOD.

Varying different combinations of augmentations.We exhaust

the pairwise combinations of all options in A = {I, SD, SG, SS}
and visualize the AUROC gain on graph-level OOD detection over

SGOOD\A without graph augmentations. As shown in Figure 6,

most combinations achieve positive gains for OOD detection.

Varying 𝐿1 and 𝐿2. We fix the layers of the two GINs in Section

3.1 to 𝐿1 = 3 and 𝐿2 = 2 by default. Searching for optimal 𝐿1 and

𝐿2 can improve OOD detection, as shown in Table 11 with their

sum fixed at 5. For example, on BACE, setting 𝐿1 = 2 and 𝐿2 = 3

increases AUROC by about 1% to 62.26%.

5 Related Work
Graph-level Representation Learning. Graph-level representa-
tion learning aims to learn representations of entire graphs [34].

GNNs [12, 17, 31, 36] are often adopted [11, 38] to first learn node

representations by message passing on graphs, and then node rep-

resentations are aggregated by flat pooling functions to get graph-

level representations [36]. However, these traditional methods have

limitations in capturing high-order structures with crucial seman-

tics for graph-level tasks, e.g., functional groups in molecules [39].

Hence, there exist methods to leverage subgraphs, e.g., hierarchi-
cal pooling [9, 18, 39] and subgraph GNNs [42, 46]. Hierarchical

pooling methods learn to assign nodes into different clusters and

coarsen graphs hierarchically. Subgraph GNNs apply message pass-

ing on extracted rooted-subgraphs of nodes in a graph, and then

aggregate subgraph representations [8]. These methods are not

designed for graph OOD detection, and they assume that graphs

are i.i.d in training and testing and learn task-specific substructures.

GraphOut-of-distributionDetection.Out-of-Distribution (OOD)
detection has recently received considerable research attention on

graph data. [33] explore node-level OOD detection by using en-

ergy function to detect OOD nodes in a graph, which is a different

problem from this paper. For graph-level OOD detection, [21] de-

sign a generative model that has the ability to identify outliers in

training graph samples, as well as OOD samples during the testing

stage. [24] develop a self-supervised learning approach to train

their model to estimate OOD scores at test time. Recently, [41] pro-

poses to learn anomalous substructures using deep random walk

kernel, which depends on labeled anomalous graphs, while OOD

graphs are unseen during the training stage and only available

during the testing stage. Instead of training GNNs for OOD detec-

tion, AAGOD [10] develops an adaptive amplifier that modifies the

graph structure to enlarge the gap between OOD and ID graphs.

Observe that existing graph-level OOD detection methods mainly

leverage node representations output by GNNs [17, 31, 36, 47] to

get graph-level representations, while the rich substructure pat-

terns hidden in graphs are under-investigated for graph-level OOD

detection. On the other hand, our method SGOOD explicitly uses

substructures in graphs to learn high-quality representations for

effective graph-level OOD detection.

6 Conclusion
We study the problem of graph-level OOD detection, and present a

novel SGOOD method with superior performance. The design of

SGOOD is motivated by the exciting finding that substructure dif-

ferences commonly exist between ID and OOD graphs, and SGOOD

aims to preserve more distinguishable graph-level representations

between ID and OOD graphs. Specifically, we build a super graph

of substructures for every graph, and develop a two-level graph

encoding pipeline to obtain high-quality structure-enhanced graph

representations.We further develop a set of substructure-preserving

graph augmentations. Extensive experiments on real-world graph

datasets with various OOD types validate the superior performance

of SGOOD over existing methods for graph-level OOD detection.

Acknowledgments
The work described in this paper was fully supported by a grant

from the Research Grants Council of the Hong Kong Special Admin-

istrative Region, China (PolyU25201221, PolyU15205224). The work

is supported by NSFC No. 62202404; P0036831; Tencent Technology

Co., Ltd. P0048511; P0048213.

CIKM ’24, October 21–25, 2024, Boise, ID, USA Zhihao Ding et al.

References
[1] Anna O Basile, Alexandre Yahi, and Nicholas P Tatonetti. 2019. Artificial intelli-

gence for drug toxicity and safety. Trends in pharmacological sciences (2019).
[2] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer,

Zoran Nikoloski, and Dorothea Wagner. 2007. On modularity clustering. TKDE
(2007).

[3] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. 2004. Finding commu-

nity structure in very large networks. Physical review E (2004).

[4] Gennaro Cordasco and Luisa Gargano. 2010. Community detection via semi-

synchronous label propagation algorithms. In BASNA.
[5] Jörg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias Rarey.

2008. On the Art of Compiling and Using’Drug-Like’Chemical Fragment Spaces.

ChemMedChem: Chemistry Enabling Drug Discovery (2008).

[6] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. 2007. Weighted graph cuts

without eigenvectors a multilevel approach. TPAMI (2007).
[7] Yingtong Dou, Kai Shu, Congying Xia, Philip S Yu, and Lichao Sun. 2021. User

preference-aware fake news detection. In SIGIR.
[8] Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. 2022.

Understanding and extending subgraph gnns by rethinking their symmetries.

NeurIPS (2022).
[9] Hongyang Gao and Shuiwang Ji. 2019. Graph u-nets. In ICLR.
[10] Yuxin Guo, Cheng Yang, Yuluo Chen, Jixi Liu, Chuan Shi, and Junping Du. 2023.

A Data-centric Framework to Endow Graph Neural Networks with Out-Of-

Distribution Detection Ability. In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining. 638–648.

[11] Zhichun Guo, Bozhao Nan, Yijun Tian, Olaf Wiest, Chuxu Zhang, and Nitesh V

Chawla. 2023. Graph-based molecular representation learning. In IJCAI.
[12] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NeurIPS.
[13] Dan Hendrycks and Kevin Gimpel. 2017. A baseline for detecting misclassified

and out-of-distribution examples in neural networks. In ICLR.
[14] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen

Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets

for machine learning on graphs. NeurIPS (2020).
[15] Yuanfeng Ji, Lu Zhang, JiaxiangWu, Bingzhe Wu, Long-Kai Huang, Tingyang Xu,

Yu Rong, Lanqing Li, Jie Ren, Ding Xue, et al. 2023. DrugOOD: Out-of-Distribution

(OOD) Dataset Curator and Benchmark for AI-aided Drug Discovery–A Focus

on Affinity Prediction Problems with Noise Annotations. AAAI (2023).
[16] Dejun Jiang, Zhenxing Wu, Chang-Yu Hsieh, Guangyong Chen, Ben Liao, Zhe

Wang, Chao Shen, Dongsheng Cao, Jian Wu, and Tingjun Hou. 2021. Could

graph neural networks learn better molecular representation for drug discovery?

A comparison study of descriptor-based and graph-based models. Journal of
cheminformatics (2021).

[17] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In International Conference on Learning Repre-
sentations.

[18] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. 2019. Self-attention graph pooling.

In ICLR.
[19] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. 2018. A simple unified

framework for detecting out-of-distribution samples and adversarial attacks.

NeurIPS (2018).
[20] Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. 2022. Ood-gnn: Out-of-

distribution generalized graph neural network. TKDE (2022).

[21] Zenan Li, Qitian Wu, Fan Nie, and Junchi Yan. 2022. Graphde: A generative

framework for debiased learning and out-of-distribution detection on graphs.

NeurIPS (2022).
[22] Shiyu Liang, Yixuan Li, and R Srikant. 2018. Enhancing The Reliability of Out-of-

distribution Image Detection in Neural Networks. In ICLR.
[23] Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. 2020. Energy-based

out-of-distribution detection. NeurIPS (2020).

[24] Yixin Liu, Kaize Ding, Huan Liu, and Shirui Pan. 2023. GOOD-D: OnUnsupervised

Graph Out-Of-Distribution Detection. In WSDM.

[25] Rongrong Ma, Guansong Pang, Ling Chen, and Anton van den Hengel. 2022.

Deep graph-level anomaly detection by glocal knowledge distillation. InWSDM.

[26] Yifei Ming, Yiyou Sun, Ousmane Dia, and Yixuan Li. 2023. How to Exploit

Hyperspherical Embeddings for Out-of-Distribution Detection?. In ICLR.
[27] Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel,

and Marion Neumann. 2020. Tudataset: A collection of benchmark datasets for

learning with graphs. CoRR (2020).

[28] Chen Qiu, Marius Kloft, Stephan Mandt, and Maja Rudolph. 2022. Raising the bar

in graph-level anomaly detection. In Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence.

[29] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang,

and Junzhou Huang. 2020. Self-Supervised Graph Transformer on Large-Scale

Molecular Data. In NeurIPS.
[30] Minglai Shao, Jianxin Li, Feng Chen, Hongyi Huang, Shuai Zhang, and Xunxun

Chen. 2017. An efficient approach to event detection and forecasting in dynamic

multivariate social media networks. In WWW.

[31] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.
[32] Jim Winkens, Rudy Bunel, Abhijit Guha Roy, Robert Stanforth, Vivek Natarajan,

Joseph R Ledsam, Patricia MacWilliams, Pushmeet Kohli, Alan Karthikesalingam,

Simon Kohl, et al. 2020. Contrastive training for improved out-of-distribution

detection. CoRR (2020).

[33] Qitian Wu, Yiting Chen, Chenxiao Yang, and Junchi Yan. 2022. Energy-based

Out-of-Distribution Detection for Graph Neural Networks. In ICLR.
[34] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A comprehensive survey on graph neural networks. TNNLS
(2020).

[35] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Ge-

niesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande. 2018. MoleculeNet: a

benchmark for molecular machine learning. Chemical science (2018).
[36] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful

are Graph Neural Networks?. In ICLR.
[37] Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In KDD.
[38] Nianzu Yang, Kaipeng Zeng, QitianWu, Xiaosong Jia, and Junchi Yan. 2022. Learn-

ing substructure invariance for out-of-distribution molecular representations. In

NeurIPS.
[39] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,Will Hamilton, and Jure

Leskovec. 2018. Hierarchical graph representation learning with differentiable

pooling. NeurIPS (2018).
[40] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and

Yang Shen. 2020. Graph contrastive learning with augmentations. NeurIPS (2020).
[41] Ge Zhang, Zhenyu Yang, Jia Wu, Jian Yang, Shan Xue, Hao Peng, Jianlin Su,

Chuan Zhou, Quan Z Sheng, Leman Akoglu, et al. 2022. Dual-discriminative

graph neural network for imbalanced graph-level anomaly detection. NeurIPS
(2022).

[42] Muhan Zhang and Pan Li. 2021. Nested graph neural networks. NeurIPS (2021).
[43] Yan Zhang, Jonathon Hare, and Adam Prugel-Bennett. 2019. Deep set prediction

networks. NeurIPS (2019).
[44] Zaixi Zhang, Qi Liu, HaoWang, Chengqiang Lu, and Chee-Kong Lee. 2021. Motif-

based graph self-supervised learning for molecular property prediction. NeurIPS
(2021).

[45] Lingxiao Zhao and Leman Akoglu. 2021. On using classification datasets to

evaluate graph outlier detection: Peculiar observations and new insights. Big
Data (2021).

[46] Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. 2021. From Stars to

Subgraphs: Uplifting Any GNN with Local Structure Awareness. In ICLR.
[47] Ziang Zhou, Jieming Shi, Shengzhong Zhang, Zengfeng Huang, and Qing Li.

2023. Effective stabilized self-training on few-labeled graph data. Inf. Sci. 631
(2023), 369–384.

	Abstract
	1 Introduction
	2 Preliminaries
	3 The SGOOD Method
	3.1 Substructure-Enhanced Graph Encoding
	3.2 Substructure-Preserving Augmentations
	3.3 Model Training and OOD Scoring
	3.4 Theoretical Analysis

	4 Experiments
	4.1 Experimental Setup
	4.2 Overall Performance
	4.3 Model Analysis
	4.4 Parameter Sensitivity

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

