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Abstract
Cryptocurrencies are rapidly expanding and becoming vital in digi-
tal financial markets. However, the rise in cryptocurrency-related
illicit activities has led to significant losses for users. To protect the
security of these platforms, it is critical to identify illicit accounts
effectively. Current detection methods mainly depend on feature
engineering or are inadequate to leverage the complex information
within cryptocurrency transaction networks, resulting in subop-
timal performance. In this paper, we present DIAM, an effective
method for detecting illicit accounts in cryptocurrency transaction
networks modeled by directed multi-graphs with attributed edges.
DIAM first features an Edge2Seq module that captures intrinsic
transaction patterns from parallel edges by considering edge at-
tributes and their directed sequences, to generate effective node
representations. Then in DIAM, we design a multigraph Discrep-
ancy (MGD) module with a tailored message passing mechanism
to capture the discrepant features between normal and illicit nodes
over the multigraph topology, assisted by an attention mechanism.
DIAM integrates these techniques for end-to-end training to de-
tect illicit accounts from legitimate ones. Extensive experiments,
comparing against 15 existing solutions on 4 large cryptocurrency
datasets of Bitcoin and Ethereum, demonstrate that DIAM consis-
tently outperforms others in accurately identifying illicit accounts.
For example, on a Bitcoin dataset with 20 million nodes and 203
million edges, DIAM attains an F1 score of 96.55%, markedly sur-
passing the runner-up’s score of 83.92%. The code is available at
https://github.com/TommyDzh/DIAM.

CCS Concepts
• Computing methodologies → Supervised learning by classifica-
tion.
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1 Introduction
Cryptocurrencies, e.g., Ethereum and Bitcoin, are of growing impor-
tance, due to the nature of decentralization and pseudo-anonymity
based on blockchain technology. As of May 2024, Bitcoin and
Ethereum are the top-2 largest cryptocurrencies with $1.5 trillion
market capitalization in total [8]. In addition to the cryptocurrency
transactions among normal accounts, illicit accounts are also tak-
ing advantage of Bitcoin and Ethereum for illegal activities, such
as phishing scams [5, 6], and money laundering [33], which put
normal users at risk of financial loss and hinder the development
of the blockchain ecosystem.

Hence, we study the detection of illicit accounts on cryptocur-
rency transaction networks. This task is particularly challenging
due to the huge number of transactions and the inherent anonymity
of cryptocurrency accounts, which lack the portrait information
crucial for identifying illicit activities. Some pioneer solutions [1,
5, 6, 25] mainly rely on feature engineering to extract handcrafted
features from transactions, which highly depends on domain exper-
tise. There are also studies using Graph Neural Networks (GNNs)
for detection [2, 25, 27, 32, 35]. Common GNNs, such as GCNs
[18] and GATs [29], mainly rely on the homophily assumption
that connected nodes share similar representations and belong to
the same class [44]. This may not be true for illicit account de-
tection. Specifically, illicit accounts are usually much fewer than
normal accounts, and they may exhibit discrepant patterns over
their neighboring accounts, most of which are normal. Such discrep-
ancy should be captured for effective detection of illicit accounts.
A recent method [15] adopts transformers to learn account rep-
resentations from Ethereum transaction sequences for detection,
without explicitly considering the network topology of transactions.
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As reviewed in Section 2, general graph anomaly detection methods
[10, 42] can be customized for illicit account detection, but yield
moderate performance in experiments.

To effectively model the cryptocurrency transaction network,
we conceptualize it as a directed multi-graph with multiple edges
connecting nodes, each edge representing a transaction between
accounts. These edges are enriched with edge attributes such as
transaction timestamps and amounts, enabling comprehensive rep-
resentation of transactional activities in both Bitcoin and Ethereum
networks. An illustrative example is depicted in Figure 1. For in-
stance, edge 𝑒10 is a transaction from nodes 𝑣6 to 𝑣7 with transaction
timestamp, value, etc., as edge attributes. Multiple edges exist be-
tween nodes, e.g., edges 𝑒4, 𝑒5, 𝑒6 between 𝑣3 and 𝑣4, representing
three transactions. A node, e.g., 𝑣4, has incoming and outgoing trans-
actions as listed in Figure 1. The transaction timestamps indicate
the sequential dependency of edges between nodes.

In this paper, we present DIAM, an effective method to Detect
Illicit Accounts on directed Multigraphs with edge attributes for
cryptocurrencies. In a nutshell, DIAM consists of well-thought-out
technical designs to holistically utilize all of the directed multigraph
topology, edge attributes, and parallel edge sequential dependen-
cies, as shown in Figure 1. First, DIAM incorporates an Edge2Seq
module designed to autonomously learn effective representations
that maintain the inherent transaction patterns depicted by directed
parallel edges with attributes. In particular, Edge2Seq identifies and
captures the sequential patterns of transactions by assembling se-
quences of edge attributes. It then integrates both the attributes of
the edges and the dependencies within these sequences into the
representations of nodes. To further utilize the multigraph topol-
ogy and handle the discrepancy issue mentioned above, we then
develop an Multigraph Discrepancy (MGD) module in DIAM. As
illustrated in Figure 1, illicit node 𝑣4 is closely connected to benign
nodes 𝑣1, 𝑣2, 𝑣3, while their representations should be discrepant
to distinguish 𝑣4 from others. To achieve this, we design MGD to
propagate not only node representations, but also the discrepancies
between nodes, along directed multiple edges, with the help of a
dedicated attention mechanism and learnable transformation. In
other words, MGD can preserve both similar and discrepant fea-
tures, which are vital for effective illicit account detection. DIAM
stacks multiple MGD modules to consider multi-hop multigraph
topology. Finally, assembling all techniques, DIAM is trained in
an end-to-end manner, to minimize a cross-entropy loss. We eval-
uate DIAM against 15 existing solutions over 4 large real-world
cryptocurrency datasets of Bitcoin and Ethereum. Extensive ex-
periments validate that DIAM consistently achieves the highest
accuracy on all datasets, outperforming competitors often by a
significant margin. Summing up, our contributions are as follows:

• We study illicit account detection on transaction networks
of cryptocurrencies, and present DIAM, an effective method
over large directed multigraphs with edge attributes.

• InDIAM, we develop an Edge2Seqmodule that automatically
encodes edge attributes, edge sequence dependencies, and
edge directions into node representations.

• We further design MGD, a multigraph discrepancy module
to effectively preserve the representation discrepancies be-
tween illicit and benign nodes on the multigraph.
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Figure 1: A directed multigraph with edge attributes.

• The superiority of DIAM is validated via extensive experi-
ments by comparing 15 baselines on 4 real datasets.

2 Related Work
Our work is related to studies on illicit account detection on cryp-
tocurrency, and graph-based anomaly detection.
Illicit Account Detection on Cryptocurrency. Early studies
mostly rely on tedious feature engineering to obtain statistical
features, such as the sum, average, standard deviation of transaction
amounts and time [2, 5, 25]. These studies then employ on-the-rack
classifiers (e.g., XGBoost [3] and LightGBM [17]) over the extracted
features to detect illicit accounts [1, 2, 5]. To further exploit the
graph topological characteristics of cryptocurrency transaction
networks, recent studies [25, 35] incorporate graphmining methods
for illicit account detection. Random-walk based node embedding is
adopted in [35], and Node2vec [13] and Ri-walk [24] are used in [25]
to extract structural information for illicit account detection. Most
of these studies still use on handcrafted node features. A recent
method [15] uses transformers to learn expressive representations
from Ethereum transaction sequences, but does not exploit the
multigraph structure of cryptocurrency transactions. There are
GNN-based methods on cryptocurrency transaction networks [2,
19, 27, 32]. An end-to-end GCN is trained in [32] for anti-money
laundering in Bitcoin. EdgeProp [27] augments edge attributes in
GNNs to identify illicit accounts in Ethereum. In [19], GNNs and
self-supervised learning are incorporated to detect phishing scams.
These studies usually focus on one cryptocurrency type, either
Ethereum or Bitcoin. On the other hand, we exploit the topological
and sequential semantics of the directed multigraph data model,
and develop techniques to automatically learn deep intrinsic node
representations that are highly effective for illicit account detection
on both Bitcoin and Ethereum cryptocurrencies.
Graph-based Anomaly Detection. There exist studies on anom-
aly detection over general graphs [9–11, 16, 21, 22, 26, 31, 39, 40, 43],
and representativemethods are based on classic GNNs, such as GCN
[18], Sage [14], and GAT [29]. GINE [16] and TransConv [26] incor-
porate edge features in GNNs for anomaly detection. However, ab-
normal nodes may have discrepant features, compared with normal
ones [23], and often hide themselves in camouflage [11]. To alleviate
the issue, CARE-GNN [11] trains a predictor to measure the simi-
larity between target nodes and their neighborhoods and adopts
reinforcement learning for detection. In [9], a new framework is
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proposed to use attention mechanism and generative adversarial
learning. Camouflage behaviors are captured by subtractive aggre-
gation on GNNs in [43]. PC-GNN [22] samples neighbors from the
same class and relieve class imbalance, while meta-learning is used
in [10] and decoupling with self-supervised learning is developed
in [31]. FRAUDRE [39] takes mean aggregation of neighborhood
differences and representations, and develops a loss function to
remedy class imbalance for anomaly detection. Note that these
methods are designed for relation graphs, and we set the number
of relations as 1 to run them on the multigraph data model in this
work. Even though these methods can be customized for the illicit
account detection problem, they are not catered for the unique
characteristics of cryptocurrency transactions and often produce
suboptimal performance in experiments.

3 Problem Formulation
Data Model. Let 𝐺 = (𝑉 , 𝐸,X𝐸 ) be a directed multigraph, consist-
ing of (i) a node set 𝑉 that contains 𝑛 nodes, (ii) a set of directed
edges 𝐸 of size𝑚, and (iii) an edge attribute matrix X𝐸 ∈ R𝑚×𝑑 ,
each row of which is a 𝑑-dimensional vector serving as the edge
attributes to encode the details of the corresponding transaction.
In a multigraph 𝐺 , nodes 𝑣 and 𝑢 can have parallel edges with
different edge attributes. Let 𝑁𝑜𝑢𝑡 (𝑣) be the multiset of node 𝑣 ’s
outgoing neighbors. If a node 𝑢 has more than one edge to 𝑣 , 𝑢 will
have multiple occurrences in 𝑁𝑜𝑢𝑡 (𝑣). Similarly, let 𝑁𝑖𝑛 (𝑣) be the
multiset of node 𝑣 ’s incoming neighbors.

Given a collection of transactions, we can build its directed edge-
attributed multigraph as follows. An Ethereum transaction is a
message sent from a sender address (i.e., account) 𝑣 , to a receiver
address 𝑢 at a certain time with transaction details, forming a di-
rected edge, e.g., edge 𝑒10 in Figure 1. Bitcoin transactions are similar
but with differences. A bitcoin transaction can contain multiple
sender accounts and receiver accounts, who may send or receive
different amounts of Bitcoin respectively in the transaction [36].
Given a Bitcoin transaction, we will create a directed edge 𝑒 from
every sender 𝑣 to every receiver 𝑢 in the transaction, with the cor-
responding transaction details from 𝑣 to 𝑢 as edge attributes. For
interested readers, see [34] for a comprehensive introduction of
Bitcoin and Ethereum.
Problem Definition. Given a directed multigraph 𝐺 = (𝑉 , 𝐸,X𝐸 )
we formulate the problem of illicit account detection on directed
multigraphs with edge attributes as a classification task. Let 𝑌L be
the set of the partially observed node labels, and each node label
𝑦𝑣 ∈ 𝑌L takes value either 1 or 0, indicating the node to be illicit or
not. The objective is to learn a binary classifier 𝑓 that can accurately
detect the illicit accounts in the set of unobserved node labels 𝑌U
to be predicted in 𝐺 , 𝑓 : 𝐺 = (𝑉 , 𝐸,X𝐸 , 𝑌L) ↦→ 𝑌L ∪ 𝑌U .

Bitcoin and Ethereum are distributed public ledgers recording
all transactions anonymously accessible to the public [2, 41], which
facilitates the build of multigraphs. For node labels, since the ad-
dresses in cryptocurrencies are unique and immutable, there are
websites and forums, like WalletExplorer [30] and EtherScan [12],
providing illicit label information, e.g., phishing. As described in
Section 5.1, we crawl such information as ground-truth labels.

4 The Proposed Method
Overview. Figure 2 illustrates the DIAM method, which inputs
a directed, edge-attributed multigraph 𝐺 representing a transac-
tion network. The first module in DIAM is Edge2Seq detailed in
Section 4.1, which automatically derives the expressive represen-
tation of a node by considering the sequences of both incoming
and outgoing edges. As shown in Figure 2, for a node 𝑣 (e.g., 𝑣4),
Edge2Seq first builds an incoming sequence 𝑋 𝑖𝑛

𝑣 and an outgoing
sequence 𝑋𝑜𝑢𝑡

𝑣 that consist of 𝑣 ’s incoming and outgoing edge at-
tributes in chronological order, respectively. Intuitively, 𝑋𝑜𝑢𝑡

𝑣 and
𝑋 𝑖𝑛
𝑣 describe different sequential transaction patterns of node 𝑣 ,

when 𝑣 serves as a sender or a receiver respectively. Then Edge2Seq
employs GRUs [7] to learn the sequence representations of both
𝑋𝑜𝑢𝑡
𝑣 and 𝑋 𝑖𝑛

𝑣 , which are then processed by pooling operations,
to get representations h𝑣𝑜𝑢𝑡 and h𝑣𝑖𝑛 respectively. Then h𝑣𝑜𝑢𝑡 and
h𝑣𝑖𝑛 are concatenated together to be the node representation h𝑣
of 𝑣 , encapsulating the bidirectional transaction patterns and their
temporal dependencies. The node representations h𝑣 for all 𝑣 ∈ 𝑉

learned by Edge2Seq are then regarded as initial inputs fed into
the proposed multigraph discrepancy (MGD) module presented in
Section 4.2. In an MGD, a target node 𝑣 receives messages from its
incoming and outgoing neighborhoods separately (e.g., 𝑣4 in the
multigraph discrepancy module of Figure 2). The incoming and
outgoing messages, denoted as r𝑣𝑖𝑛 and r𝑣𝑜𝑢𝑡 , contain both neigh-
bor representations and their discrepancies with the target node, in
order to preserve distinguishable features for illicit account detec-
tion. Then an attention mechanism is designed in MGD to integrate
𝑣 ’s representation z𝑣 , incoming message r𝑣𝑖𝑛 , and outgoing mes-
sage r𝑣𝑜𝑢𝑡 together via attentions 𝛼𝑣,1, 𝛼𝑣,2, and 𝛼𝑣,3. DIAM stacks
multiple MGD layers to consider multi-hop multigraph topology
to learn more expressive discrepancy-aware node representations.
The last component of DIAM is a multilayer perceptron (MLP) to
learn illicit probability 𝑝𝑣 of node 𝑣 . DIAM is trained to minimize a
binary cross-entropy loss in Section 4.3.

4.1 Edge2Seq
High-quality node representations are essential for detecting illicit
accounts. As discussed in Section 1, cryptocurrency accounts often
lack profile information, and illicit accounts in transaction networks
frequently disguise their native features to blend in with legitimate
nodes, a challenge exacerbated by the decentralized and pseudo-
anonymous nature of cryptocurrencies. Current methods mostly
rely on feature engineering to extract statistical features, which
demands domain expert knowledge.

Herewe develop Edge2Seq to automatically generate high-quality
node representations that capture the essential transaction patterns
within nodes. Briefly, Edge2Seq combines edge attributes (trans-
action details), parallel edge sequential dependencies (transaction
relationships), and edge directions (transaction flow directions)
within the directed edge-attributed multigraph data model. In par-
ticular, Edge2Seq treats the incoming and outgoing edges of a node
distinctly, recognizing that they represent different directions of
money flow, which is key for identifying transaction patterns in
cryptocurrency networks. To effectively discern these directional
transaction patterns, our model constructs separate incoming and
outgoing sequences for each node 𝑣 in multigraph 𝐺 , sorted by
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Figure 2: The DIAM framework with an input transaction network modeled as a directed multigraph with edge attributes.

timestamps. We employ GRUs to process these sequences to learn
representations. These representations then serve as the node rep-
resentations for further training. Next, we detail Edge2Seq in two
main steps: edge sequence generation and edge sequence encoding.
Edge Sequence Generation. Given a node 𝑣 of the input multi-
graph𝐺 , Edge2Seq first builds two sequences for it. In particular, for
all outgoing edges of 𝑣 , Edge2Seq sorts the outgoing edges in chrono-
logical order according to the timestamps on edges, and gets 𝐸𝑜𝑢𝑡𝑣 =

(𝑒1𝑣 , 𝑒2𝑣 ..., 𝑒𝑇𝑣 ), the sequence of 𝑇 sorted outgoing edges of 𝑣 . For in-
stance, in Figure 1, node 𝑣4 has outgoing edge sequence (𝑒6, 𝑒7, 𝑒8).
Edge2Seq then extracts the corresponding edge attributes accord-
ingly, and builds the outgoing edge attribute sequence of 𝑣 , 𝑋𝑜𝑢𝑡

𝑣 =

(x𝑒1𝑣 , x𝑒2𝑣 , ..., x𝑒𝑇𝑣 ). Then, similarly, we also build an incoming edge
attribute sequence𝑋 𝑖𝑛

𝑣 . Obviously, sequences𝑋𝑜𝑢𝑡
𝑣 and𝑋 𝑖𝑛

𝑣 of node
𝑣 consider both edge sequence and edge attributes, and also utilize
parallel edges between 𝑣 and its neighbors. Intuitively, 𝑋𝑜𝑢𝑡

𝑣 (resp.
𝑋 𝑖𝑛
𝑣 ) represents the transaction behaviors of node 𝑣 when 𝑣 serves

as a sender (resp. receiver).
Note that an account can participate in thousands of transac-

tions, resulting to substantially long sequences. The number of
transactions of accounts commonly follows the power-law distri-
bution [4]. In other words, only a few nodes have excessively long
sequences 𝑋𝑜𝑢𝑡

𝑣 or 𝑋 𝑖𝑛
𝑣 . To reduce the computational costs associ-

ated with handling extremely long sequences, we apply a common
trick [20, 28] by limiting the sequence length to be at most𝑇max and
retaining the most recent edges. In experiments, we study the im-
pact of varying 𝑇max. In addition, for nodes without any incoming
or outgoing edges, we add self-loops to generate sequences.
Edge Sequence Encoding. After generating sequences 𝑋𝑜𝑢𝑡

𝑣 and
𝑋 𝑖𝑛
𝑣 for node 𝑣 in the input multigraph𝐺 , we encode the sequences

into the representation of node 𝑣 . We use node 𝑣 ’s length-𝑇 outgoing
sequence 𝑋𝑜𝑢𝑡

𝑣 = (x𝑒1𝑣 , x𝑒2𝑣 , ..., x𝑒𝑇𝑣 ) to explain the process, and that
of 𝑋 𝑖𝑛

𝑣 naturally follows. In particular, as shown in Eq. (1), starting
from 𝑡 = 1, until the end of the length-𝑇 sequence 𝑋𝑜𝑢𝑡

𝑣 , we first

apply a linear transformation on edge attributes x𝑒𝑡𝑣 to get z
𝑜𝑢𝑡
𝑒𝑡𝑣

via a
one-layer MLP with learnable W𝑜𝑢𝑡 and b𝑜𝑢𝑡 . Then we apply GRU
over z𝑜𝑢𝑡

𝑒𝑡𝑣
and the (𝑡 − 1)-th hidden state h𝑡−1𝑣𝑜𝑢𝑡

, to get the updated
h𝑡𝑣𝑜𝑢𝑡 at the 𝑡-th position of sequence 𝑋𝑜𝑢𝑡

𝑣 :

z𝑜𝑢𝑡
𝑒𝑡𝑣

= W𝑜𝑢𝑡x𝑒𝑡𝑣 + b𝑜𝑢𝑡 ,

h𝑡𝑣𝑜𝑢𝑡 = GRU𝑜𝑢𝑡 (z𝑜𝑢𝑡𝑒𝑡𝑣
, h𝑡−1𝑣𝑜𝑢𝑡

),
(1)

where W𝑜𝑢𝑡 ∈ R
𝑐
2 ×𝑑 and b𝑜𝑢𝑡 ∈ R

𝑐
2 are learnable parameters, and

𝑐 is the representation dimension. By convention, the initial hidden
state of GRU, h𝑡=0𝑣𝑜𝑢𝑡

, is set to be zero.
Essentially, we generate a representation h𝑡𝑣𝑜𝑢𝑡 for each outgo-

ing edge at position 𝑡 ∈ [1,𝑇 ] of sequence 𝑋𝑜𝑢𝑡
𝑣 . Then we apply

element-wise max-pooling to get the representation h𝑣𝑜𝑢𝑡 of se-
quence 𝑋𝑜𝑢𝑡

𝑣 ,
h𝑣𝑜𝑢𝑡 = 𝜑𝑝𝑜𝑜𝑙 ∀𝑡 ∈[1,𝑇 ] (h

𝑡
𝑣𝑜𝑢𝑡

), (2)

where 𝜑𝑝𝑜𝑜𝑙 (·) is the max-pooling operation.
Then, we apply a similar procedure over the incoming sequence

𝑋 𝑖𝑛
𝑣 of node 𝑣 by using anotherGRU𝑖𝑛 , to get the incoming sequence

representation h𝑣𝑖𝑛 . Finally, we obtain the representation h𝑣 of node
𝑣 by concatenating h𝑣𝑖𝑛 and h𝑣𝑜𝑢𝑡 in Eq. (3).

h𝑣 = h𝑣𝑜𝑢𝑡 | |h𝑣𝑖𝑛 . (3)

Since we obtain the representations h𝑣𝑖𝑛 and h𝑣𝑜𝑢𝑡 based on
the incoming and outgoing edge attribute sequences of 𝑣 respec-
tively, inherently node representation h𝑣 can preserve the hidden
transaction patterns of node 𝑣 in both directions.

4.2 MGD
Note that the representation h𝑣 of node 𝑣 obtained by Edge2Seq in
Section 4.1 only captures 𝑣 ’s individual transaction features con-
tained in its outgoing and incoming edges. In this section, we aim
to leverage the multi-hop multigraph topology to enhance the rep-
resentation for illicit account detection. One straightforward way is
to adopt conventional GNNs. However, as explained, conventional
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GNNs heavily rely on the assumption that similar nodes tend to
connect to each other and share similar representations [14], which
may be less effective on the task of illicit account detection on
multigraphs [9, 11]. Intuitively, illicit and normal nodes, despite
potential close connections, should have distinct representations.
An effective model should be capable of learning these discrepant
representations between closely connected normal and illicit nodes.

To accomplish this, we present a Multigraph Discrepancy mod-
ule (MGD), with three technical designs: (i) directed discrepancy-
aware message passing with sum pooling, (ii) layer-wise learnable
transformations, and (iii) an attention mechanism over directional
representations, to learn expressive representations.

The MGD is discrepancy-aware, transforming and transmitting
not just node representations, but also the discrepancies between
nodes through a proposed message passing mechanism on multi-
graphs. Moreover, for a target node 𝑣 , MGD separately considers the
discrepancies of its incoming and outgoing neighbors, acknowledg-
ing that a node’s behavior can vary as either a sender or receiver of
transactions. As confirmed in our experiments, MGD outperforms
existing counterparts in illicit account detection.

In DIAM, let 𝐿 be the total number of MGD modules stacked
together. The first MGD layer takes the representations h𝑣 of nodes
𝑣 ∈ 𝑉 learned by Edge2Seq in Section 4.1 as input. Without am-
biguity, let h𝑣 (ℓ=0) represent the input of the first MGD layer. As
shown in Eq. (4), the ℓ-th MGD first applies a layer-wise linear
transformation with learnable weights W(ℓ )

2 and b(ℓ )2 to convert
representation h(ℓ−1)𝑣 to intermediate z(ℓ )𝑣 via a one-layer MLP.
Then for an in-neighbor 𝑢 ∈ 𝑁𝑖𝑛 (𝑣), the message passed from 𝑢 to
𝑣 in the ℓ-th MGD isW(ℓ )

3 (z(ℓ )𝑢 | | (z(ℓ )𝑣 − z(ℓ )𝑢 )), which includes both
in-neighbor𝑢’s representation z(ℓ )𝑢 and its discrepancy (z(ℓ )𝑣 −z(ℓ )𝑢 )
with target node 𝑣 , followed by a learnable linear transformation
usingW(ℓ )

3 . Aggregating all such information for every 𝑢 ∈ 𝑁𝑖𝑛 (𝑣),
we obtain r(ℓ )𝑣𝑖𝑛 that is the discrepancy-aware incoming message
that node 𝑣 receives from its incoming neighborhood. Note that
𝑁𝑖𝑛 (𝑣) is a multiset of node 𝑣 ’s in-neighbors in the input multi-
graph 𝐺 , and thus, we consider parallel edges during the message
passing. Similarly, we can get the discrepancy-aware outgoing mes-
sage r(ℓ )𝑣𝑜𝑢𝑡 that 𝑣 receives from its outgoing neighborhood 𝑁𝑜𝑢𝑡 (𝑣),
as shown in Eq. (4). Specifically, r(ℓ )𝑣𝑜𝑢𝑡 considers every out-neighbor
𝑢’s representation as well as its discrepancy with 𝑣 . Finally, we
develop an attention mechanism to integrate the three aspects,
namely 𝑣 ’s representation z(ℓ )𝑣 , discrepancy-aware incoming and
outgoing messages r(ℓ )𝑣𝑖𝑛 and r(ℓ )𝑣𝑜𝑢𝑡 , via attention 𝛼𝑣,1, 𝛼𝑣,2, and 𝛼𝑣,3,
to get node representation h(ℓ )𝑣 at the ℓ-th MGD.

z(ℓ )𝑣 = W(ℓ )
2 h(ℓ−1)𝑣 + b(ℓ )2 ,

r(ℓ )𝑣𝑖𝑛 =
∑︁

∀𝑢∈𝑁𝑖𝑛 (𝑣)
W(ℓ )

3 (z(ℓ )𝑢 | | (z(ℓ )𝑣 − z(ℓ )𝑢 )),

r(ℓ )𝑣𝑜𝑢𝑡 =
∑︁

∀𝑢∈𝑁𝑜𝑢𝑡 (𝑣)
W(ℓ )

3 (z(ℓ )𝑢 | | (z(ℓ )𝑣 − z(ℓ )𝑢 )),

h(ℓ )𝑣 = 𝛼𝑣,1z
(ℓ )
𝑣 + 𝛼𝑣,2r

(ℓ )
𝑣𝑖𝑛 + 𝛼𝑣,3r

(ℓ )
𝑣𝑜𝑢𝑡 ,

(4)

where 𝑁𝑖𝑛 (𝑣) and 𝑁𝑜𝑢𝑡 (𝑣) are the multisets of 𝑣 ’s incoming and
outgoing neighbors respectively; W(ℓ )

2 ∈ R𝑐×𝑐 , b(ℓ )2 ∈ R𝑐 , and
W(ℓ )

3 ∈ R𝑐×2𝑐 are learnable parameters; 𝛼𝑣,1, 𝛼𝑣,2, and 𝛼𝑣,3 are
attention weights.

Attentions 𝛼𝑣,1, 𝛼𝑣,2, and 𝛼𝑣,3 are calculated by Eq. (5). A larger
attention weight indicates that the corresponding aspect is more
important in the message passing process, which provides a flexible
way to aggregate the messages in Eq. (4).

𝑤𝑣,1 = 𝜎 (z(ℓ )𝑣 · q);𝑤𝑣,2 = 𝜎 (r(ℓ )𝑣𝑖𝑛 · q);𝑤𝑣,3 = 𝜎 (r(ℓ )𝑣𝑜𝑢𝑡 · q),
𝛼𝑣,𝑘 = softmax((𝑤𝑣,1,𝑤𝑣,2,𝑤𝑣,3))𝑘 ,

(5)

where 𝜎 is LeakyReLU activation, q ∈ R𝑐 is the learnable attention
vector, softmax is a normalization, and 𝑘 = 1, 2, 3.
Discussion. There are several ways to handle the discrepancy is-
sue in literature. Here we highlight the technical differences of
MGD compared with existing work [9, 11, 23, 31, 39]. Moreover,
we experimentally compare MGD with these methods in Section 5.
Compared with our MGD, the counterpart in FRAUDRE, dubbed
as FRA, (Eq. (2) in [39]) does not have the latter two designs in
MGD and uses mean pooling. As analyzed in [37], sum pooling
yields higher expressive power than mean pooling, particularly for
multiset neighborhoods of multigraphs in this paper. Further, the
attention mechanism and learnable layer-wise transformations in
MGD enable the flexible pass and aggregation of both incoming and
outgoing discrepancy-aware messages along parallel edges. Thus,
MGD is technically different from FRAUDRE. In [9], GDN only
aggregates the representation differences between a target node
and its neighbors, while omitting neighbor representations them-
selves (Eq. (1) and (2) in [9]). Contrarily, our MGD passes richer
messages containing both neighbor discrepancies and neighbor rep-
resentations. There are also different methodologies in [11, 23, 31].
In [11, 23], they train samplers to identify discrepant neighbors, e.g.,
via reinforcement learning in [11]. DCI [31] adopts self-supervised
learning and clustering to decouple representation learning and
classification. In experiments, DIAM outperforms these existing
methods for illicit account detection on directed multigraphs with
edge attributes, validating the effectiveness of our designs in MGD.

4.3 Objective
DIAM works in an end-to-end manner to detect illicit accounts on
directed multigraphs with edge attributes. At the last 𝐿-th MGD
layer of DIAM, we get the final representations h(𝐿)𝑣 of nodes 𝑣 .
For all labeled nodes 𝑣 , we send their representations into a binary
classifier, which is a 2-layer MLP network with a sigmoid unit as
shown in Eq. (6), to generate the illicit probability 𝑝𝑣 of a node 𝑣 .
Obviously, 1 − 𝑝𝑣 is the normal probability of node 𝑣 .

𝑝𝑣 = sigmoid(MLP(h(𝐿)𝑣 )) (6)

We adopt the standard binary cross-entropy loss for training:

Loss(𝚯) = −
∑︁

𝑦𝑣 ∈𝑌L
(𝑦𝑣 log(𝑝𝑣) + (1 − 𝑦𝑣) log(1 − 𝑝𝑣)), (7)

where 𝑌L is the set of groundtruth node labels, 𝑦𝑣 is the label of
node 𝑣 , 𝚯 contains all parameters of DIAM.
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Analysis. We provide the time complexity analysis of DIAM. In
Edge2Seq, the time complexities of one-layer MLP transformation,
GRU,max-pooling areO(𝑇max |𝑉 |𝑑𝑐),O(𝑇max |𝑉 |𝑐2), andO(𝑇max |𝑉 |𝑐)
respectively, where𝑇max is the maximum sequence length, |𝑉 | is the
number of nodes, 𝑑 and 𝑐 are the dimensions of edge attributes and
hidden representations. The overall time complexity of Edge2Seq is
O(𝑇max |𝑉 |𝑐 (𝑐 + 𝑑)). In MGD, the time complexity of message pass-
ing operation on incoming and outgoing neighbors is the same as
vanilla message passing-based GNNs like Sage [14] and GAT [29],
which is O(|𝑉 |𝑐2 + |𝐸 |𝑐), where |𝐸 | is the number of edges. The
time complexity of attention mechanism is O(|𝑉 |𝑐), and the time
complexity of the two-layer MLP is O(|𝑉 | (𝑐2 + 2𝑐)). Combining
the time of all above components, we get the time complexity of
DIAM as O(𝑇max |𝑉 |𝑐 (𝑐 + 𝑑) + |𝐸 |𝑐).

5 Experiments
We experimentally evaluate DIAM against 15 baselines on 4 real-
world transaction networks of cryptocurrency datasets, with the
aim to answer the following 5 research questions:

• RQ1: How does DIAM perform in terms of effectiveness,
compared with existing state of the art?

• RQ2: How does the MGD module perform, compared with
existing counterparts?

• RQ3: How does the Edge2Seq module perform, compared
with manual feature engineering?

• RQ4: How is the training efficiency of DIAM?
• RQ5: How does DIAM perform in sensitivity analysis?

5.1 Experimental Setup
Datasets. We evaluate on 4 large cryptocurrency datasets, includ-
ing 2 Ethereum datasets and 2 Bitcoin datasets. The statistics of
the datasets are listed in Table 1. The first three datasets are from
existing works, and we create the last largest Bitcoin dataset with
more than 20 million nodes and 203 million edges. We obtain
ground-truth labels of the datasets by crawling illicit and normal
account labels from reliable sources, including Etherscan [12] and
WalletExplorer [30]. Ethereum-S [38] and Ethereum-P [2] are two
Ethereum transaction networks. In both datasets, every edge has
two attributes: transaction amount and timestamp. The labeled
illicit nodes are the addresses that conduct phishing scams in these
two datasets. For Ethereum-P dataset from [2], it only contains
illicit node labels. We enhance the dataset by identifying the be-
nign accounts (e.g., wallets and finance services) in Ethereum-P
from Etherscan [12] as normal node labels. Bitcoin-M [33] contains
the first 1.5 million transactions from June 2015. As explained in
Section 3, a Bitcoin transaction can involve multiple senders and re-
ceivers. After built as a multigraph, Bitcoin-M has about 2.5 million
nodes and 14 million edges. In Bitcoin-M, an edge has 5 attributes:
input amount, output amount, number of inputs, number of out-
puts, and timestamp. We build the largest Bitcoin-L based on all
transactions happened from June to September 2015. Bitcoin-L has
more than 20 million nodes and 200 million edges, and each edge
has 8 attributes: input amount, output amount, number of inputs,
number of outputs, fee, total value of all inputs, total value of all
outputs, and timestamp. We obtain the labeled data in Bitcoin-M
and Bitcoin-L by crawling fromWalletExplorer [30]. Following [33],

Table 1: Statistics of the datasets.

Dataset #Nodes #Edges #Edge attribute #Illicit #Normal Illicit:Normal

Ethereum-S [38] 1,329,729 6,794,521 2 1,660 1,700 1:1.02
Ethereum-P [2] 2,973,489 13,551,303 2 1,165 3,418 1:2.93
Bitcoin-M [33] 2,505,841 14,181,316 5 46,930 213,026 1:4.54
Bitcoin-L 20,085,231 203,419,765 8 362,391 1,271,556 1: 3.51

Bitcoin addresses belonging to gambling and mixing services are
regarded as illicit accounts due to their strong association with
money laundering, while the addresses in other types are normal
accounts. Parallel edges between nodes are common in the datasets.
For instance, in Ethereum-P, there are 5,353,834 connected node
pairs, and 1,287,910 of them have more than one edge (24.06%).
Baselines.We compare with 15 competitors in 3 categories, which
are reviewed in Section 2.
• Cryptocurrency illicit account detection methods, including Pde-
tector [2], SigTran [25], EdgeProp [27], BERT4ETH [15].

• Graph-based anomaly detection methods, including CARE-GNN
[11], DCI [31], PC-GNN[22], GDN from AEGIS [9], and FRAU-
DRE [39]. Specifically, the baseline GDN is a message passing
module in AEGIS, while AEGIS itself is unsupervised and thus
not compared in the supervised setting.
CARE-GNN, PC-GNN, and FRAUDRE are designed for relation
graphs, and we set the number of relations as 1, to run them.

• GNN models, including GCN [18], Sage [14], GAT [29], GATE
[29], GINE [16], and TransConv [26].

Implementation Details.We implement DIAM and GNN-based
models using Pytorch and Pytorch Geometric. We also use Pytorch
to implement GDN and Pdetector following the respective papers.
For the other competitors, we use the codes provided by the authors.
All experiments are conducted on a Linux server with Intel Xeon
Gold 6226R 2.90GHz CPU and an Nvidia RTX 3090 GPU card. For
the baselines requiring initial node features as input, following
the way in [25], we obtain node features, such as node degree and
total received/sent amount, by feature engineering for the baselines.
Particularly, in this way, we get 48, 48, 69, and 89 node features
for datasets Ethereum-P, Ethereum-S, Bitcoin-M, and Bitcoin-L
respectively. In terms of Pdetector, we extract the 8 specific node
features suggested in its paper [2] for its training to make a fair
comparison. GDN, EdgeProp, as well as the GNN-based models,
are not originally designed for the binary classification task in this
paper. Therefore, we regard them as the encoder to generate node
representations, which are then sent to a 2-layer MLP classifier
with the same objective in Section 4.3.
Parameter Settings.We set embedding dimension (𝑐 = 128), the
number of GNN layers (2), learning rate (0.001), dropout rate (0.2).
In DIAM, we set maximum sequence length 𝑇𝑚𝑎𝑥 = 32. We study
the impact of 𝑇𝑚𝑎𝑥 in Section 5.5. For all methods, we adopt Adam
optimizer, mini-batch training [14] with batch size 128. If not speci-
fied, rectified linear units (ReLU) is used as the activation function.
For all GNN models, GDN, EdgeProp, and our method requiring
neighborhood sampling, given a target node, we randomly sample
its 1 and 2-hop neighbors with sample size 25 and 10 respectively.
For other settings in baselines, we follow the instructions in their
respective papers. The number of training epochs is set as 30 in
Ethereum-S, Ethereum-P, and Bitcoin-M, and set as 10 in Bitcoin-L.
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Table 2: Overall results on all datasets (in percentage %). Bold: best. Underline: runner-up. Relative improvements by DIAM
over runner-ups in brackets.

Method Ethereum-S Ethereum-P Bitcoin-M Bitcoin-L
Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1 AUC

GCN 81.21 96.35 88.09 87.52 86.07 80.15 82.97 87.98 79.90 81.21 80.49 88.33 80.11 83.35 81.68 88.72
Sage 92.92 89.95 91.39 91.71 90.49 91.14 90.81 94.04 87.17 83.27 85.16 90.28 83.16 84.79 83.92 89.93
GAT 85.99 93.55 89.60 89.52 85.11 85.37 85.06 90.23 86.16 81.45 83.71 89.27 79.45 65.73 71.80 80.44
GATE 66.49 90.66 76.70 73.62 88.66 85.41 86.98 90.95 71.28 67.06 68.96 80.52 67.76 36.86 47.58 65.87
GINE 75.65 88.63 81.58 80.66 82.45 81.75 82.02 88.07 64.68 61.88 63.14 77.17 70.06 55.45 61.70 74.27
TransConv 90.97 86.16 88.47 89.00 84.92 91.25 87.95 93.03 70.55 56.43 62.62 75.61 73.93 64.09 68.52 78.79
GDN 85.55 83.79 84.63 85.14 82.42 84.00 83.19 89.13 81.56 74.76 77.99 85.51 73.68 45.92 56.57 70.62
CARE-GNN 79.81 88.53 83.93 83.61 72.72 82.76 77.41 86.42 33.41 71.93 45.36 70.04 31.02 73.29 43.57 63.50
DCI 71.77 92.18 80.71 78.86 75.44 76.95 76.19 84.47 82.19 51.47 63.30 74.50 81.18 51.77 62.53 73.91
PC-GNN 83.34 81.28 82.26 82.87 79.18 89.38 83.96 90.93 36.89 73.01 48.87 72.72 30.04 82.68 44.07 64.01
FRAUDRE 73.3 95.26 82.83 81.1 84.06 80.28 82.10 82.89 36.05 72.97 48.23 72.27 33.46 76.67 46.59 66.69
SigTran 87.10 93.33 90.11 90.23 69.41 55.47 61.66 73.90 75.97 52.24 61.91 74.30 83.25 75.22 79.03 85.45
Pdetector 79.27 91.60 84.99 84.65 82.37 83.58 82.97 88.98 80.43 58.77 67.92 77.81 77.08 52.76 62.64 74.14
EdgeProp 81.59 85.36 83.30 83.38 89.49 91.78 90.57 94.15 73.82 69.21 71.39 81.88 72.39 67.09 69.51 79.84
BERT4ETH 85.54 87.65 86.58 86.93 88.35 80.29 84.13 88.48 80.03 59.95 68.55 78.32 84.70 77.36 80.87 86.69

DIAM 97.11 96.68 96.89 96.97 94.82 92.95 93.86 95.66 92.83 90.39 91.59 94.43 97.72 95.40 96.55 97.39
(+4.5%) (+0.3%) (+6.0%) (+5.7%) (+4.8%) (+1.3%) (+3.4%) (+1.6%) (+6.5%) (+8.6%) (+7.6%) (+4.6%) (+15.4%) (+12.5%) (+15.1%) (+8.3%)

Evaluation Settings. We adopt 4 evaluation metrics: Precision,
Recall, F1 score, and Area Under ROC curve (AUC for short). All
metrics indicate better performance when they are higher. For each
dataset, we split all labeled nodes into training, validation, and
testing sets with ratio 2:1:1. Each model is trained on the training
set. When a model achieves the highest F1 score on the validation
set, we report the evaluation results on the testing set as the model’s
performance. For each method, we train it for 5 times and report the
average value of each evaluation metric. We also study the training
time and the impact when varying training set size as well as the
percentage of illicit node labels.

5.2 Overall Effectiveness
To answer RQ1, we report the overall results of DIAM and all
competitors on all datasets in Table 2. First, observe that DIAM
consistently achieves the highest accuracy by all evaluation metrics
over all datasets, outperforming all baselines often by a significant
margin. For instance, on Ethereum-S, DIAM achieves 96.89% F1
score, while the F1 of the best competitor Sage is 91.39%, indicating
a relative improvement of 6%. On Ethereum-P, DIAM has precision
94.82%, outperforming the best competitor by a relative improve-
ment of 4.8%. On Bitcoin-M and Bitcoin-L, DIAM also achieves the
highest accuracy for illicit account detection. In particular, DIAM
achieves 91.59% and 96.55% F1 scores on Bitcoin-M and Bitcoin-L,
7.6% and 15.1% relatively higher than the best baselines, respec-
tively. Another observation is that the performance gain of DIAM
is larger on the largest Bitcoin-L, e.g., 15.4% precision improvement
over the best competitor SigTran as shown in Table 2. The rea-
son is that DIAM with Edge2Seq is able to take advantage of the
abundant edge attributes in the multigraph of Bitcoin-L, to automat-
ically extract informative representations for accurate detection of
illicit accounts. Existing solutions, such as SigTran, require manual
feature engineering, and thus, could not effectively leverage the
large-scale data to preserve the intrinsic transaction patterns of
accounts. In Section 5.3, we conduct an evaluation to further reveal
the effectiveness of Edge2Seq, compared with handcrafted features.

We conclude that DIAM achieves superior performance for illicit
account detection on cryptocurrencies.

5.3 Study on MGD and Edge2Seg
MGD Evaluation. As we have discussed in Section 4.2, our MGD
is different from existing work. To test the effectiveness of MGD in
DIAM and answer RQ2, we replace MGD with existing GNN layers,
namely, Sage layer [14], GAT layer [28], GDN layer in AEGIS [9],
and FRA layer in FRAUDRE [39], and compare their performance.
Figure 3 presents the F1 and AUC results for DIAM across all
datasets, using each of the five different GNN layers. Observe that
DIAM with MGD always achieves the highest F1 and AUC scores
on all datasets, and outperforms GDN, Sage, GAT, and FRA layers.
The results demonstrate the effectiveness of our MGD to preserve
the differentiable representations of both illicit and benign nodes
with the consideration of the discrepancies when conducting mes-
sage passing over the multigraph topology. In particular, given a
target node 𝑣 , Sage and GAT layers do not consider discrepancies,
GDN layer only passes and aggregates the representation differ-
ences of its neighbors to it. Compared with the FRA layer, our
MGD employs sum pooling, layer-wise learnable transformations,
and an attention mechanism to flexibly pass and aggregate both
incoming and outgoing neighbor discrepancies and neighbor rep-
resentations. Moreover, among existing GNN layers, GDN layer
performs better than Sage, GAT, and FRA layers on Ethereum-P in
Figure 3(b), while being inferior on the other three datasets. This
indicates that it is also important to propagate and aggregate neigh-
bor representations to target nodes in the input multigraph, rather
than only considering node representation differences, for effective
illicit account detection.
Edge2Seq Evaluation. To answer RQ3, we demonstrate the power
of Edge2Seq by interchanging it with the handcrafted features as the
input of Sage, GAT, and our MGD, and report the evaluation results
on Bitcoin-L in Table 3. Specifically, in Table 3, Manual indicates to
have the handcrafted node features introduced in Section 5.1 as the
initial input of node representations for training, while Edge2Seq
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Figure 3: Compare the MGD module with other GNN layers.

Table 3: Manual features v.s., learned representations by
Edge2Seq on Bitcoin-L (in percentage %). Relative improve-
ments of Edge2Seq over Manual are in brackets.

GNN Layer Variant F1 AUC

Sage
Manual 83.92 89.93
Edge2Seq 92.80 (+10.6%) 94.30 (+4.9%)

GAT
Manual 71.80 80.44
Edge2Seq 92.75 (+29.2%) 94.46 (+17.4%)

MGD
Manual 85.29 92.39
Edge2Seq 96.55 (+13.2%) 97.39 (+5.4%)

automatically learns node representations by applying GRUs over
the incoming and outgoing edge sequences of nodes. As shown in
Table 3, comparing against Sage (resp. GAT) with manual features,
Sage (resp. GAT) with Edge2Seq always achieves higher F1 and
AUC by a significant margin. For instance, GAT with Edge2Seq
improves GAT with manual features by a significant margin of
29.2%. The results indicate the superiority of Edge2Seq, compared
with manual feature engineering. Further, the result of our MGD
with manual features in Table 3 (i.e., DIAM without Edge2Seq) also
indicates that Edge2Seq is important for the problem studied in this
paper. Our method DIAM assembling Edge2Seq and MGD together
obtains the best performance, as shown in Table 3.

5.4 Training Efficiency
To answer RQ4, Table 4 reports the average training time per epoch
of DIAM and the competitors in seconds on all datasets. First, ob-
serve that anomaly detection methods (GDN, CARE-GNN, DCI,
PC-GNN, and FRAUDRE) and our method DIAM are generally
slower than the common GNN models listed in the first group of
Table 4, e.g., GCN and Sage, which is because of the unique de-
signs for illicit/anomaly detection in these methods. However, as
reported in Section 5.2, compared with DIAM, common GNN mod-
els yield inferior accuracy since they are not dedicated to the task
of illicit account detection. Second, DIAM is faster than most graph-
based anomaly detection methods. Specifically, on Ethereum-S and
Ethereum-P, DIAM is faster than CARE-GNN, DCI, PC-GNN, and
FRAUDRE. On Bitcoin-M and Bitcoin-L, DIAM is faster than DCI,
PC-GNN, and FRAUDRE. In addition, although EdgeProp is fast, it
is not as accurate as DIAM as shown in Section 5.2. The training

Table 4: Training time per epoch (Seconds)

Method Ethereum-S Ethereum-P Bitcoin-M Bitcoin-L
GCN 0.29 0.65 14.47 274.20
Sage 0.31 0.67 13.76 270.80
GAT 0.75 1.14 18.25 307.70
GATE 0.57 0.92 13.42 130.08
GINE 0.13 0.39 8.92 104.23
TransConv 0.22 0.66 14.72 181.82
EdgeProp 0.17 0.39 9.73 105.22
GDN 0.39 0.74 18.47 294.64
CARE-GNN 0.62 1.80 29.19 257.45
DCI 1.06 1.37 46.27 972.52
PC-GNN 1.62 6.10 90.70 6525.68
FRAUDRE 1.34 2.58 75.40 884.20
BERT4ETH 2.57 3.69 286.32 4107.06
DIAM 0.45 0.70 35.92 330.73
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Figure 4: Performance Comparison with Varying 𝑇𝑚𝑎𝑥

Table 5: Ablation Study (in percentage %)

Methods Ethereum-S Ethereum-P Bitcoin-M Bitcoin-L
F1 AUC F1 AUC F1 AUC F1 AUC

DIAM \MGD 95.17 95.26 82.23 88.66 69.81 81.87 72.96 81.77
DIAM \A 96.75 96.83 93.28 95.62 89.94 92.93 95.36 96.65
DIAM 97.11 96.97 93.86 95.66 91.59 94.43 97.72 97.39

time per epoch in Table 4 does not include SigTran and Pdetec-
tor, since they are not trained in an epoch manner. Considering
together the training efficiency in Table 4 and the effectiveness in
Table 2, we can conclude that DIAM has superior accuracy for illicit
account detection, while being reasonably efficient, on large-scale
cryptocurrency datasets.

5.5 Sensitivity Analysis
We conduct experiments for sensitivity analysis to answer RQ5.
Varying the maximum sequence length 𝑇𝑚𝑎𝑥 .We vary 𝑇𝑚𝑎𝑥

in Edge2Seq from 2 to 128 and report the performance of DIAM
and average training time per epoch (seconds) in Figure 4. The
result of 𝑇𝑚𝑎𝑥 = 128 on Bitcoin-L is not reported due to out of
GPU memory. In Figure 4a, observe that as𝑇𝑚𝑎𝑥 increases, F1 score
on Ethereum-S is relatively stable, F1 score on Ethereum-P and
Bitcoin-L increases first and then becomes stable, and F1 score on
Bitcoin-M increases first and then decreases after 𝑇𝑚𝑎𝑥 is beyond
32. As discussed in [20], the decrease in Bitcoin-M may be caused
by the noise introduced among distant elements when considering
very long sequences in sequence models. Therefore, we choose
𝑇𝑚𝑎𝑥 = 32 as default in experiments. In terms of training time
per epoch in Figure 4b, when 𝑇𝑚𝑎𝑥 increases, it takes more time
for training on all datasets, since there are longer sequences to
be handled by Edge2Seq. The increasing trend of training time is
consistent with the time complexity analysis in Section 4.3.
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Figure 5: Varying illicit ratio (%) on all datasets.

Ablation Study. To validate the effectiveness of every component
inDIAM, we conduct extra ablation study by evaluatingDIAMwith-
out MGD in Section 4.2 (denoted as DIAM \MGD), and DIAM with-
out the attentionmechanism in Eq. (5) (i.e., set𝛼𝑣,1 = 𝛼𝑣,2 = 𝛼𝑣,3 = 1
in Eq. (4)), denoted as DIAM \A. Table 5 presents their performance
compared with the complete version DIAM. First, observe that
the performance on all four datasets increases as we add more
techniques, validating the effectiveness of the proposed MGD and
attention mechanism. Further, note that essentially DIAM \MGD is
only with Edge2Seq (i.e., only considering a node’s local transaction
features), and thus, it has inferior performance as shown in Table
5. This observation indicates the importance of incorporating the
multigraph topology for illicit account detection.
Varying illicit ratio. As shown in Table 1, the number of illicit
accounts is relatively high compared with normal nodes, particu-
larly on Ethereum-S and Ethereum-P datasets. In order to stress
test DIAM and the baselines when the illicit node labels are scarce,
we have conducted experiments to vary the illicit ratio from 1%
to 9%, by randomly sampling a subset of illicit nodes in training
on every dataset. The illicit ratio is the proportion of illicit nodes
in all labeled training nodes. Figure 5 reports the performance of
all methods on all datasets. The overall observation is that DIAM
outperforms existing methods under most illicit ratios, except the
AUC at 1% on Ethereum-S. As the illicit ratio decreases, the per-
formance of all methods drops on all datasets, since all methods
would be under-trained with limited labels. Further, the superiority
of DIAM is more obvious on larger datasets. The reason is that
our method can better leverage the abundant data to automatically
extract meaningful features via Edge2Seq and MGD in DIAM. The
results in Figure 5 demonstrate the effectiveness of the proposed
DIAM when labels are scarce.
Varying training data ratio. To compare the performance of
DIAM with baselines under the situation with insufficient training
data, we vary the percentage of training data from 10% to 50%. The
F1 results on all datasets are reported in Figure 6, where DIAM
and the top-2 best baselines per dataset are evaluated. The over-
all observation is that the F1 scores of all methods decrease as
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Figure 6: Varying training set size ratio

the amount of training data decrease; meanwhile, DIAM keeps
achieving the highest effectiveness. For instance, on Ethereum-S
in Figure 6a, we compare DIAM with the top-2 baselines Sage and
GCN of the dataset (see Table 2). For different sizes of training data,
DIAM keeps outperforming the baselines. Similar trends are ob-
served in the other three datasets. Another observation is that the
performance of DIAM is relatively stable on the largest Bitcoin-L.
Compared to training with 50% of the data, training with 10% of the
data only resulted in a 9.6% decrease in model performance. While
the two other competitors decreased 18.3% (Sage) and 41.7% (GCN),
respectively, which validates the capability of DIAM to leverage
abundant data to obtain expressive representations.

6 Conclusion
We present DIAM, an effective discrepancy-aware multigraph neu-
ral network for the problem of illicit account detection on cryp-
tocurrency transaction networks. The core techniques in DIAM
include Edge2Seq that leverages sequence models to automatically
learn node representations capturing both incoming and outgoing
transaction patterns, and a new Multigraph Discrepancy module
MGD, which is able to learn high-quality representations to dis-
tinguish the discrepancies between illicit and normal nodes. We
conduct extensive experiments on 4 large cryptocurrency datasets,
and compare DIAM against 15 existing solutions. The comprehen-
sive experimental results show that DIAM consistently achieves
superior performance. Note that the multigraph model in this paper
can also describe other transaction networks besides cryptocur-
rencies, such as online payment data by tech firms, e.g., AliPay
and PayPal. Hence, in the future, in addition to cryptocurrency
transaction networks, we plan to apply our method to other types
of transaction networks to further validate its effectiveness.
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