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Abstract

Tables are a prevalent format for structured data, yet their metadata,
such as semantic types and column relationships, is often incom-
plete or ambiguous. Column annotation tasks, including Column
Type Annotation (CTA) and Column Property Annotation (CPA),
address this by leveraging table context, which are critical for data
management. Existing methods typically serialize all columns in a
table into pretrained language models to incorporate context, but
this coarse-grained approach often degrades performance in wide
tables with many irrelevant or misleading columns. To address this,
we propose a novel retrieve-and-verify context selection frame-
work for accurate column annotation, introducing two methods:
REVEAL and REVEAL+. In REVEAL, we design an efficient unsu-
pervised retrieval technique to select compact, informative column
contexts by balancing semantic relevance and diversity, and de-
velop context-aware encoding techniques with role embeddings and
target-context pair training to effectively differentiate target and
context columns. To further improve performance, in REVEAL+,
we design a verification model that refines the selected context
by directly estimating its quality for specific annotation tasks. To
achieve this, we formulate a novel column context verification prob-
lem as a classification task and then develop the verification model.
Moreover, in REVEAL+, we develop a top-down verification infer-
ence technique to ensure efficiency by reducing the search space
for high-quality context subsets from exponential to quadratic. Ex-
tensive experiments on six benchmark datasets demonstrate that
our methods consistently outperform state-of-the-art baselines.
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1 Introduction

Relational tables are a fundamental format for organizing structured
data in diverse applications. As structured data grows in volume
and complexity, understanding tables through metadata becomes
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Figure 1: Example on two real-world tables: (a)(c) Raw tables;
(b)(d) Tables with selected contexts.
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Figure 2: The impact of column number on CTA.

critical for efficient management and utilization [2, 39]. However,
table metadata, particularly the semantic types and relationships
of columns, is often missing, incomplete, or ambiguous [22, 30].
Column annotation mitigates this via important tasks, including
Column Type Annotation (CTA), which predicts a target column’s
semantic type, and Column Property Annotation (CPA), also known
as Column Relationship Annotation, which identifies relationships
of column pairs. Accurate column annotation is crucial for applica-
tions such as schema matching [11, 28], dataset discovery [14, 23],
data integration [24, 41], and semantic data versioning [38].

In this work, we investigate CTA and CPA in scenarios where
metadata is unavailable. Accurate annotation of a target’s semantic
type or relationship requires the context of other columns within
the same table. For example, in Table A of Figure 1(a), the target
column (in gray) contains float values such as ‘11.11” and ‘13.13".
Solely relying on the target itself, it is difficult to determine if it
represents PRICE or RATING semantic type. However, when consid-
ering the other columns, the target is likely to be PRICE since it is
followed by a currency column, and the table describes books.

Recent studies [6, 32, 39, 40] have leveraged language models
(LMs) such as BERT [8] and LLaMA [12] to enhance column anno-
tation by utilizing column representations as context [14, 39, 47],
and even inter-table columns [40]. A common approach is to serial-
ize all columns in a table into a single sequence and input it into
LMs, such as BERT in Doduo [39], to generate column embeddings
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that capture patterns and relationships between columns. Then the
model predicts the semantic type or relationship of the target as a
classification problem based on the generated embeddings.

While existing methods have made notable progress, their ap-
proach to leveraging column context remains coarse-grained. This
often leads to sub-optimal performance, particularly in wide tables
with many columns, which are common in real-world scenarios [31].
We conduct an empirical analysis of Doduo on two datasets, GitTa-
blesSC and SOTAB-CTA, to examine the impact of the number of
columns in a table on model performance (see detailed experiments
in Section 6). As shown in Figure 2, performance improves in terms
of Macro-F1 and Micro-F1 as the number of columns increases
from 1 to 12, demonstrating the benefit of leveraging additional
column content. However, performance declines when the number
of columns exceeds 12. This indicates that wide tables with many
columns pose greater challenges, as not all columns are beneficial
for the target. Including all columns may introduce noise and re-
dundancy, degrading performance [37, 46]. We provide Example 1
with two real tables in Figure 1 to illustrate this issue.

ExamPLE 1. Figure 1(a) and (c) show two real tables with target
columns in grey and the goal is to predict their semantic types,
either PRICE or RATING, which are shown for illustration but not
available during annotation. Both targets contain float values, and
the tables include columns with similar data types, such as text
and numbers. Using all columns as context, a model may fail to
distinguish the targets, leading to incorrect predictions. For instance,
Doduo generates embeddings for the two targets with a high cosine
similarity of 0.966, making them hard to differentiate.

However, closer inspection reveals that the target in Table A is
likely PRICE, as it is followed by a currency column with GBP and
USD values, while the target in Table B is likely RATING, as it is fol-
lowed by a percentage column. Selecting only relevant columns, such
as TITLE and CURRENCY for Table A, and TITLE and SCORE (%) for
Table B, as shown in Figure 1(b) and (d), reduces the cosine similarity
between the targets to 0.591, making them more distinguishable.
This highlights the importance of selecting relevant context columns
for accurate annotation.

These empirical findings reveal the importance of explicitly se-
lecting relevant column contexts for accurate column annotation.
To this end, we propose a novel retrieve-and-verify context selec-
tion framework comprising the REVEAL and REVEAL+ methods.
REVEAL delivers superior annotation performance with high ef-
ficiency, while REVEAL+ further enhances annotation accuracy
significantly with moderate additional overhead.

In REVEAL, we first design an efficient retrieval method to se-
lect a compact, informative subset of columns from the input table
T as the column context C for a given target in an unsupervised
manner (Section 4.1). This method ensures that C is both semanti-
cally relevant and diverse, providing meaningful context without
requiring labeled supervision. Next, to generate high-quality em-
beddings that effectively distinguish target and context columns,
we develop context-aware encoding techniques (Section 4.2). This in-
cludes a context-aware encoder with role embeddings to explicitly
mark column roles, and a target-context pair training strategy that
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Table 1: Frequently used notations.

Notation Description

T A table with multiple columns.

ci The i-th column in the table.

T The target column or column pair for annotation.
gtr The ground-truth of the target.

C The retrieved column context for 7.

S The verified column context for 7.

S’ A subset of columns from C.

I The verification model.

II(z, S) The quality score assigned by the verification model.
f The prediction module.

h%, The embedding of 7 with context S’.

YS The label indicating the quality of a column context.
K The desired size of the retrieved column context C.

treats each target-context pair as a distinct training unit, enabling
effective modeling of target-context interactions.

To further improve performance, we extend REVEAL with RE-
VEAL+, incorporating a verification model to refine C into a verified
column context S. The verification directly estimates the quality of
the selected column context for the target in a supervised manner,
ensuring that the context is not only relevant but also effective for
the specific annotation tasks. To this end, we formulate a novel col-
umn context verification problem as a classification task, construct a
pseudo-labeled dataset, and design and train the verification model
(Section 5.1). To avoid the exponential search space of all subsets of
C to find the highest quality S, we develop a top-down verification
inference method that efficiently obtains S using a greedy strategy,
reducing the search space to quadratic (Section 5.2).

We conduct extensive experiments on six benchmark datasets,
comparing our methods with state-of-the-art baselines. The results
show that REVEAL and REVEAL+ consistently outperform existing
approaches, demonstrating that our techniques in the proposed
context selection framework advance column annotation perfor-
mance.

We summarize our contributions below:

e We propose a retrieve-and-verify column context selection frame-
work, introducing the REVEAL and REVEAL+ methods to address
the challenges of noisy and redundant column contexts in column
annotation tasks.

e We propose a retrieval method to select compact and informa-
tive column contexts and introduce context-aware encoding to
differentiate target and context columns for better embeddings.

o We design a verification model with a novel problem formulation
and an efficient top-down inference strategy to refine the selected
column context, further boosting annotation performance.

o Extensive experiments on six benchmark datasets validate the
effectiveness and efficiency of our proposed methods.

2 Preliminaries

We focus on two column annotation tasks: Column Type Annota-
tion (CTA) and Column Property Annotation (CPA) [6, 32, 39, 47].
As illustrated in Figure 1, CTA assigns semantic types (e.g., PRICE,
RATING) to individual columns, providing a clearer understanding
of their semantics. CPA aims to determine the semantic relationship
between column pairs, such as place_of_birth linking person to
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Figure 3: The Framework of REVEAL and REVEAL-+.

city, or has_population linking city to population. Instead of
primitive data types (e.g., String, Int, Timestamp), CTA and CPA
focus on annotating columns with semantic types and relationships,
offering deeper semantic understanding of tabular data. Formally, a
table T with n columns is represented as T = (cy, ¢2, . . ., ¢n), Where
c; denotes the i-th column in the table. Each column ¢; comprises m
cell values, expressed as ¢; = (vi, ué, el vfn), where vj. represents
the value of the j-th cell in column ¢;. The definitions of CTA and
CPA [32, 39] are as follows:

DEFINITION 2 (COLUMN TYPE ANNOTATION (CTA)). Given a table
T with n columns, and a target column t = c;, where 1 < i < n, and
a set of possible semantic types T, the task of CTA is to develop a
model M that can predict a type label M(z,T) € T so that each cell
in T has the same semantic type.

DEFINITION 3 (COLUMN PROPERTY ANNOTATION (CPA)). Given a
table T with n columns, and a target column pair t = (c;, cj), where
1 <i, j < n, and a set of possible relation types R, the task of CPA is
to develop a model M that can predict a relation type M(z,T) € R
to represent the relationship between the two columns.

We focus on the setting where no metadata, such as headers or
captions, is available, as these are often missing in many datasets [18,
27]. Hereafter, when the context is clear, we use target r to denote
either a target column in CTA or a pair of target columns in CPA.

Table 1 summarizes the frequently used notations in this paper.

3 Overview

We provide an overview of our methods REVEAL and REVEAL+.
Our methods are designed to be applicable to both CTA and CPA.
We mainly explain our methods in the context of CTA for clarity.
Figure 3(a) illustrates the REVEAL method. Given a table T with
n columns, there may be different targets, e.g., 7 and 7’, to be anno-
tated. As discussed, treating all columns in T as a shared context
for different targets can lead to degraded performance. Therefore,
in REVEAL, we first design a retrieval method to explicitly select
a subset of columns from T as the column context C for a target 7,
considering semantic relevance and diversity among columns in T
(Section 4.1). The retrieval method operates solely on unsupervised
information, ensuring scalability and effectiveness. Then the next
step is to encode them into embeddings via language models. Exist-
ing studies [32, 39] typically serialize all columns into a sequence,
treating the target and context columns uniformly. However, we
argue that the embedding of a column should adapt based on its

role—whether as the target or as part of the context. To achieve
this, we develop context-aware encoding techniques that explicitly
differentiate the target from its context columns in embeddings
(Section 4.2). Specifically, we introduce a context-aware encoder
with role embeddings to mark the roles of columns during the
embedding process, and we adopt a target-context pair training
strategy, where each target 7 is paired with its column context C as
distinct training units. The obtained embeddings are then passed
to a linear layer for generating the final predictions.

REVEAL excels state-of-the-art methods in effectiveness and effi-
ciency, as shown in the experiments. While efficiency is important,
annotation quality often takes precedence, especially for offline
tasks. To further enhance annotation quality, REVEAL+ improves
effectiveness with moderate additional computational cost.

REVEAL-+ is shown in Figure 3(b). Similar to REVEAL, it starts
with the same retrieval method to obtain C for the target 7. While
C is selected based on unsupervised information in T, the columns
in C are not yet verified whether they are truly helpful in the anno-
tation tasks. To address this, REVEAL+ incorporates a verification
model (Section 5) to further refine C to obtain a verified column
context S for the target 7, which retains only the most informa-
tive columns for the target 7 on the annotation tasks. To improve
the efficiency of obtaining S, we propose a top-down verification
inference method (Section 5.2). As formulated in Section 5.1, the
verification model II evaluates a subset S’ of C for a target 7 by
outputting a quality score II(z, S”), which represents the likelihood
that S’ enables the correct annotation of 7. This verification task is
framed as a classification problem: determine whether a subset S’
of C is effective for accurately annotating the target 7. The subset
of C with the maximum quality score is selected as the verified
column context S for the target 7. A key challenge is the lack of
labeled data for training the verification model. To address this,
we construct a labeled dataset by leveraging the predictions of the
trained prediction module f on the training and validation datasets,
which are available after f is trained. For each subset S’ C C, we
label it as positive if f makes a correct prediction for 7 using S’
as context, indicating that S’ is a good context. Otherwise, it is la-
beled as negative. The model II is then trained on this constructed
labeled dataset. During inference, the model II finds the S that
maximizes the score I1(z, S’) for 7. The trained prediction module
f then uses S to generate the final prediction for r. Evaluating all
subsets S8’ C C is infeasible due to the exponential search space of
2/€1. Hence, we propose a top-down verification inference method
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(Section 5.2) that iteratively refines C, reducing the complexity to
0(|C|?), with early stopping to improve efficiency.

4 The REVEAL Method

4.1 Column Context Retrieval

As mentioned, in a wide table T = (cy,...,cp), using all columns
for annotating a target 7 can degrade performance due to irrelevant
columns. We aim to retrieve a subset of columns as the column
context C for 7. However, the search space of 2" subsets grows expo-
nentially with n, and different targets may require distinct column
contexts. In this section, we propose an efficient retrieval method
that leverages only the unsupervised information of columns in T
to retrieve a compact yet informative column context C for 7.
Intuitions. As shown in Figure 1, not all columns in a table equally
contribute to understanding the target  with ground truth PRICE.
For example, the Description column, despite containing detailed
text, is irrelevant to the target’s semantics, while the CURRENCY
column provides essential context. Including irrelevant columns
can degrade performance, highlighting the need to filter for seman-
tically relevant columns. One naive approach is to select the top-K
most similar columns to 7 as C. However, this may not always
yield an informative context. For example, consider constructing a
column context C of size 3 for the target in Figure 1(a). The target
7 contains numerical values, and the cosine similarity between the
target and other columns are: ID (0.82), PAGES (0.76), YEAR (0.68),
CURRENCY (0.55), TITLE (0.28), and DESCRIPTION (0.21). Selecting
the top-3 most similar columns would yield ID, PAGES, and YEAR.
However, these columns are all numerically related and fail to pro-
vide diverse contextual information. In contrast, CURRENCY (0.55),
though less similar, specifies the nature of the values in the target
and is crucial for inferring its semantic type. Thus, a more balanced
approach that considers both similarity and diversity is needed.
Retrieval Method. To select the column context C of a target 7
in a table T, we consider both semantic similarity and diversity
among columns. First, each column ¢ in T is serialized into a string
by concatenating its cell values v, . .., vp,. This serialized string is
then passed through a text encoder & [36], which generates a dense
embedding e; for the column. The embeddings of semantically
similar columns are closer in the embedding space.

ec. = E(CONCAT (v, ---,0m)), (1)

where CONCAT(-) represents the concatenation operation, &(+) is
the text encoder, e, € R9% denotes the embedding of column ¢ € T,
and d, is the embedding dimension.

Then we use maximal marginal relevance [5] as a measure to
balance relevance and diversity, and develop an iterative process
to construct C. Starting with an empty C = 0, we iteratively select
the column ¢ € T \ C that maximizes the marginal relevance score
g(c,7,C), and add it to C. In Equation (2), g(c, 7, C) is defined as
the difference between the semantic similarity of ¢ to the target 7,
cos(ec, e7), and the maximum similarity of ¢ to any column already
in C, max¢ ¢ cos(ec, €c). The first term ensures that the selected
column is relevant to the target, while the second term penalizes
redundancy by discouraging columns similar to those already in C.
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Algorithm 1: Column Context Retrieval

Input: Table T, target 7, encoder &, size K
Output: Column context C
foreach ¢ € T do
‘ e. «— &(c) // Encode columns
3 Ce«—10

¢’ « argmaxcos(ec,e;) // Select the first column
ceT\{7}

C—Ccu{c}
// Iterative selection
while |C| < K do
¢’ « argmax [cos(ec, €;) — maxy»ec cos(ec, eq) |
ceT\C
8 C—Ccu{c}
return C

[

'S

w

< o

©

This process continues until C reaches the desired size K.

g(c,7,C) = cos(ec, er) — max cos(ec, ec)
ce
¢’ = argmax g(c, 7, C). @
ceT\C

ExAMPLE 4. In Figure 1(b), for a target t containing numeri-
cal values, selecting the top-3 most similar columns retrieves other
numeric columns (e.g., ID, YEAR, PAGES), which provide limited
assistance in clarifying the true semantic meaning of the target,
i.e., PRICE. In contrast, our retrieval method selects a more seman-
tically meaningful size-3 column context C. We initialize C as
empty and iteratively add columns based on their marginal rel-
evance scores. First, the most similar column to the target, ID (0.82),
is added, resulting in C = {ID}. Next, we compute g(c,t,C) for
each column ¢ € T \ C. For instance, PAGES has a high simi-
larity to the target (0.76) but also a high similarity to ID (0.71),
yielding g(PAGES,7,C) = 0.05. On the other hand, CURRENCY
has cos(ec,e;r) = 0.55 and cos(ec,erp) = 0.34, resulting in
g(CURRENCY, 7, C) = 0.21, making it more favorable than PAGES.
Similarly, other columns in T \ C have lower marginal relevance
scores than CURRENCY, so we expand C to {ID, CURRENCY}. Finally,
we repeat the process to select the third column. TITLE achieves
the highest marginal relevance score, surpassing PAGES, YEAR, and
DESCRIPTION. Thus, the final C is {ID, CURRENCY, TITLE}, which
includes CURRENCY to specify the nature of the target values, ensur-
ing a well-rounded contextual representation.

Algorithm 1 depicts the retrieval method. Parameter K is the
desired size of column context. If a table T has columns less than
K, we simply use all available columns (excluding the target) as C.
Otherwise, we first compute the column embeddings for all columns
in T using the text encoder & (Lines 1-2). We then initialize the
column context C as empty and select the first column ¢’ to be added
into C as the most similar column to the target (Lines 4-5). Next, we
iteratively select the next column ¢’ from T\ C based on its marginal
relevance score g(c, 7, C), until the size of C reaches K (Lines 6-8).
Specifically, the selected ¢’ maximizes the marginal relevance score
(Line 7) and is added to C (Line 8). In experiments, we have varied
K to study its impact in Figure 8; the performance increases first
and then remains stable after a certain K value, indicating that a
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moderate number of contextual columns is sufficient to provide a
well-rounded context for the annotation tasks.

4.2 Context-Aware Encoding

After retrieving C for a target 7 in a table T, we need to effec-
tively leverage it for annotation. For different targets, their context
columns may vary, and the model should be trained to prioritize the
target while recognizing the supporting role of its context columns.
To achieve this, we propose a context-aware encoder that incorpo-
rates column role embeddings to explicitly differentiate the target
from its context columns during the embedding process. Addition-
ally, we introduce target-context pair training to train the model on
individual target-context pairs, ensuring that each target is paired
with its specific context rather than entire tables in a single pass.
Context-Aware Encoder with Role Embeddings. Given a tar-
get 7 and its column context C in a table T, we first serialize the
columns in C into a token sequence by preserving their original
order in the table and concatenating their cell values column by
column, separated by a special token ([CLS] in BERT [8]) used in
language models. For instance, consider the table in Figure 4: the se-
rialization process produces the sequence “[CLS] NYC LDN [CLS]
3.0T 0.6T [CLS] USD GBP”, where each column is delineated by a
[CLS] token. Then for each token w; in the sequence, the language
model maps it to an embedding by aggregating a pretrained word
embedding w; and a position embedding p;, which encodes the
position of the token in the sequence.

To explicitly distinguish the target from its context columns,
we introduce the third embedding component for a token, column
role embedding, in the context-aware encoder. For each token w;
in the serialized sequence, we assign a binary role indicator r; €
{0, 1}, where r; = 1 if the token belongs to the target and r; = 0
otherwise. This role indicator is mapped to a role embedding vector
rj € R4 using a trainable lookup table E,j, € R?*4_where d is the
embedding dimension, as follows.

rj =Er01&[rj]’ (3)

wherer; € R4 is the role embedding of token w;.

Note that E,j contains two embeddings: one for tokens belong-
ing to the target and another for tokens from context columns.
These embeddings are jointly optimized with the other model pa-
rameters during training, enabling the model to effectively differ-
entiate structural roles and prioritize the target.

Then, as shown in Figure 4, a token w;j is embedded into x;
that combines three components: the word embedding w ;, position
embedding p;, and role embedding r; in Equation (4).

Xj:Wj+pj+l‘j. (4)

Then the token embeddings x; are fed into a language model,
primarily composed of transformer layers with self-attention mech-
anisms [42], to produce the contextualized target embedding hE, for
target 7. Specifically, hZ, is extracted from the output correspond-
ing to the [CLS] token of the target in CTA, regarding [CLS] as a
representative token for the column, as shown in Figure 4. In CPA,
with a pair of two columns as the target, we concatenate the embed-
dings of the columns to form the target embedding. In our design,
hE, captures the semantics of the target, while also incorporating
contextual information from the columns in C, considering their

SIGMOD ’26, May 31-June 05, 2026, Bengaluru, India

target embedding h¢
(Cho Jhy " hy JThs | hy T hs [ he [ hy [ b |
t T T t t T T f

( Transformer Blocks )

f f 1
Cxo Jlx [ % 7 X5 | % ][ X5 ][ X6 [[ X7 [ X5 |
S S N S - f_ft t 1 1
M O [ ol il o el ol o]l
‘ + !

P i L P2 L ps I palps [ Ps I Pz I ps ]

[ ;
LWV[CLS]H Wnyc|Weon |[WicLs][ W3.o1[ Wo.s|[WicLs][ Wusp] Wege]!

[CLS] NYC LDN [CLS] 3.0T 0.6T [CLS] USD GBP
w wo.rq embeddlng. . e
p: position embedding
r: role embedding

c

[ c c3
3.0T NYC | USD
0.6T LDN | GBP

Figure 4: Illustration of Context-Aware Column Embedding.

distinct roles. Then a linear layer classifier ¢ is applied to hz, to
predict the semantic type type or relation of the target,

f(r.C) =¢(hg), ©)

where the prediction module f (7, C) denotes the predictions for
the target 7 based on the given context C.

Target-Context Pair Training. Prior works [14, 32, 39] typically
use the entire table T as the training instance for different targets,
resulting in all targets sharing the same table context. This ap-
proach may include columns that are irrelevant or uninformative
for specific targets, potentially degrading model performance. In
contrast, our design allows different targets in the same table T to
have distinct column contexts C, tailored to each target. After ob-
taining the column context C for a target 7 in a table T, we pair the
target ¢ with its unique context columns C and the corresponding
ground-truth label gt;, forming a training instance (7, C, gt;). This
reformulates the training data into a set of target-context pairs,
enabling the model to focus on target-specific contexts. Since the
retrieval method in Section 4.1 is unsupervised, this process is ef-
ficient and does not require additional supervision. Formally, for
each labeled target in the original training set D" we construct
the target-context pair training set Z)Itg}irn as follows:

Dtrain — {(T, C,gtf) | re Dtrain}, (6)

pair
where gt; is the ground truth of 7.
Our method REVEAL is then trained using this target-context
pair training set, optimizing the following objective:

LO= pem Y, O ™)

pair (£.C.gtz) eptrain

pair
where (7, C) is predication for target 7, and ¢ is the cross-entrpoy
loss, and 6 represents the trainable parameters.

5 The REVEAL+ Method

Given a target 7 in a table T, we efficiently obtain its column con-
text C in Section 4.1 using unsupervised information, which is
independent of specific CTA/CPA tasks. However, the retrieved
context columns in C are not yet verified for their effectiveness in
the specific CTA/CPA tasks. In this section, we propose REVEAL+,
which incorporates a verification method to refine C by directly
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evaluating the effectiveness of its columns for the target 7 for the
annotation tasks. This refinement produces a verified column con-
text S, which improves the annotation performance of REVEAL+
compared to REVEAL. We first formulate the column verification
problem as a classification task and present the verification model
design (Section 5.1). To further enhance efficiency, we propose a
top-down verification inference technique to greedily identify S
from C without exhaustively evaluating all subsets (Section 5.2).

5.1 Verification Model Formulation and Design

During inference, given a table T, we aim to identify a verified
column context S C C that is most effective for the target 7. A naive
approach is to exhaustively evaluate all possible subsets of C using
the trained prediction module component f (as shown in Figure 3(a))
and select the subset with the highest prediction confidence as S.
However, prior research has demonstrated that model confidence
is often poorly calibrated and does not reliably indicate prediction
correctness [16], result in suboptimal or misleading decisions, as
validated by experiments in Section 6.4. Moreover, exhausting all
subsets is computationally expensive.

On the other hand, we leverage the training and validation
datasets with ground truth to train a lightweight verification model
I1, which produces a quality score I1(7, S’) to evaluate the quality
of a subset 8’ C C as a verified column context for the target 7.
Below, we formulate column context verification as a classification
task. The formal column context verification problem is to find S
that maximizes the quality score II(z, S”), as follows:

DEFINITION 5 (COLUMN CONTEXT VERIFICATION). Given a table
T with a target t and its column context C, let S = {S’ | 8’ € C}.
Column context verification aims to identify the subset S € S that
maximizes the quality score, Le.,
S = argmax I1(7, S’), (8)
S’eS
where I1 evaluates the effectiveness of S’ for annotating t.

A key challenge in implementing the verification model IT is
the lack of labeled training data. There are no predefined labels
indicating whether a subset of columns S” is effective for annotating
a target 7. Manually defining rules for labeling may not align with
actual annotation performance and fails to account for the target-
specific nature of context quality. Different targets within the same
table often require distinct context columns, making the labeling
process inherently complex and context-dependent. To address
this, we propose to construct labeled data for IT using the training
and validation datasets, as these datasets already contain ground-
truth labels. This approach ensures that the verification model II is
aligned with the trained prediction module f in Figure 3(a), as II is
trained using the predictions of f on these datasets.

Labeled Data for Verification Model. Given a training or vali-
dation sample with a target 7 in a table T and its retrieved column
context C, we determine whether a subset S’ C C enables the
trained prediction module f to make a correct prediction for 7.
Specifically, for each subset S’, we obtain the prediction f(z, S”)
via Equation (5), and compare it with the ground-truth label gt;.
This binary outcome (correct or incorrect prediction) serves as the
label yg, for training our verification model. Formally, as defined
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in Equation (9), if the prediction f(z, S’) matches the ground truth
gtr, we label yg, = 1 (positive, i.e., high quality); otherwise, we
label y'5, = 0 (negative, i.e., low quality).

i _{1, if f(r,.8) = gtz

, 9
Us 0, otherwise. ©)

To create the labeled data DM for the verification model, for
each training and validation table T with target 7, ground truth gt,
and column context C, we evaluate every subset S’ C C. Using f,
we compute the prediction f(r, ") and assign the label y, for S’
based on Equation (9), resulting in a labeled sample (7, S’, yg,).

Both training and validation datasets are used to construct Drain
for the following reasons. The prediction module f, trained on the
training dataset, tends to produce mostly positive labels (yg, =1),
which may lead to insufficient negative samples. In contrast, the
validation dataset, unseen during f training, provides more negative
examples (y, = 0), ensuring a balanced dataset for training II.

The construction of DM occurs after f is trained, ensuring no
interference between their training processes. During inference, the
trained IT is used to identify the verified column context S, which
enhances the predictions of the trained f, as shown in Figure 3(b).
Verification Model Design. The architecture of the verification
model IT is designed to predict the label yg, (0 or 1) for a given
target 7 in table T and a subset of columns S’. A simple imple-
mentation could treat IT as a binary classifier, outputting a single
logit transformed by a sigmoid function to estimate I1(z, S”), the
probability that f correctly predicts 7’s label given context S’". How-
ever, as noted in [17], such an approach may lead to overconfident
positive predictions, as it does not explicitly model the likelihood
of negative outcomes.

To address this, we implement IT as a lightweight multilayer
perceptron (MLP) with an output layer producing two logits: one
for the positive class and one for the negative class. The softmax
probability of the positive class is used as the quality score. This
design ensures that when the verification model is uncertain about
a context, the logits for both classes are close, resulting in a soft-
max score near 0.5. Conversely, when the model is confident, the
logits are skewed, yielding a score closer to 0 or 1. We use the
context-aware encoding technique from Section 4.2 to compute
the embedding h, for the target r given the subset S’. The MLP
in the verification model then processes h’%, and outputs a two-

dimensional logit vector z%, € R?, corresponding to the logits for
the negative and positive classes:

z, = MLP(h,). (10)
The predicted quality score is then computed as the softmax
probability of the positive class:

, ezg',l
(r, S") = —. (11)
1 Zgr
=o€ S

The loss function Ly for training the verification model is

Ly(0n) = - 2z

-y log(1-11(r.8) + 7, logN(r. 8|
(r.8",yg ) e Dy

(12)

where 017 represents the trainable parameters.
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5.2 Top-Down Verification Inference

After training the verification model IT in Section 5.1, we use it
during inference to identify the verified column context S from C
for the target 7. However, evaluating all 2/Cl possible subsets of
C is computationally prohibitive. Instead, we propose a top-down
inference method to efficiently search for S in a greedy manner.

The method starts with the full C and iteratively removes
columns that are less informative to the target . This approach
leverages the fact that the retrieved context columns in C from
Section 4.1 are already high-quality, with only a few potentially
noisy or irrelevant ones. Larger contexts generally provide richer se-
mantic information, offering a more comprehensive understanding
of the target. However, excessively small subsets may amplify the
influence of individual misleading columns, degrading predictions.
The top-down verificaiton process makes greedy decisions and
incorporates early stopping to balance efficiency and effectiveness.

Specifically, let S (1) denote the verified column context obtained
in the ¢-th iteration. The top-down inference starts from S(t=0) = ¢
of size |C| for the target 7 in a table T. In the next (¢ + 1) iteration,
we generate all subsets of s by removing a single column from
it, i.e., 8’ ¢ 8™ with | 8’| = |S(| — 1. For all these subsets, we
compute their quality scores I1(z, S”) by Equations (10) and (11).
We then select the subset S” with the highest quality score as the
new verified column context S (* +1), to be used in the next iteration.
The computation is formally described as:

S+ _ (7, S’), (13)

argmax
§'cS1,|8=|80)|-1

This greedy refinement process continues until the size of N
reaches 1 or the following early stop condition is met: If the new
verified column context S(**1) has a lower quality score than the
previous one S ®), meaning that unlikely the new S (t+1) can help
to make better predictions for 7, and the subsequent iterations may
not yield better results. In this case, we stop the refinement process
and keep the current S®) as the final verified column context S
for the input target 7. Formally, we check the following early-stop
condition:

O(r, Sy < II(r, V). (14)

This top-down inference technique reduces the search space
from 2!€! to at most |C|? (in the worst case). In practice, it is much
smaller due to early stopping.

Algorithm. Algorithm 2 summarizes the top-down inference pro-
cess. In Lines 1-3, we initialize the verified column context NI
as C and compute its quality score using the verification model IT
with Equations (10) and (11). In Lines 4-15, we iteratively refine
the verified column context S*) by generating all subsets of size
|S()| — 1 and selecting the one with the highest quality score. The
while loop terminates when the size of S (*) reaches 1 or the early
stop condition is met at Lines 13-14. In the ¢-th iteration, we gen-
erate all subsets of size |S (t )I — 1 (Line 5), and initialize the best
subset S(*1) as empty and its quality score as —oco (Line 6-7). Then
we iterate over all subsets S” in S (Line 8) and compute their quality
scores using the verification model IT (Line 9). If the current subset
S’ has higher I1(z, S”) than the best subset S(t+1) 5o far, we update
the best subset S(*+1) and its quality score to be the current subset

SIGMOD ’26, May 31-June 05, 2026, Bengaluru, India

Algorithm 2: Top-Down Inference for Verified Column Context

Input: target 7, column context C, trained verification model IT
Output: Verified column context S

1t 0

2 SO ¢

3 GetTI(z, S*)) by Equations (10) and (11);

4+ while |[S(V] > 1do

5| S {8 c S |18=18D] -1}

6 S(H—l) P 0;

7 O(zr, St*)) «— —co;

8 foreach S’ € S do

9 Get II(7, 8”) by Equations (10) and (11);

10 if I(r, S’) > II(r, S(**V)) then

11 S+  §’:// Update best subset
12 I(r, S —TI(7, 8’); // Update best score
13 if I(z, SU*D) < TI(r, S®)) then

14 ‘ break; // Early stopping

15 te—t+1;

6 S — S,

17 return S;

8’ and its quality score II(z, S”) (Line 10-12). Lines 13-14 check
the early stop condition. If the new verified column context S (£+1)
has a lower quality score than the previous one S *), we stop the
process. Otherwise, we update the iteration index t and continue to
the next iteration (Line 15). Finally, we return the verified column
context S as the final output (Lines 16-17).

5.3 Training Process

We summarize the training process of REVEAL+ in Algorithm 3.
Given a training set DY ain e obtain the column contexts C for the
targets using the retrieval algorithm in Section 4.1 (Line 1). Then we
obtain the target-context pair training set D;r:iir“ using Equation (6)
(Line 2). As introduced in Section 4.2, this dataset includes pairs of
target columns (or column pairs for CPA) and their retrieved context
columns. Then, we train the prediction module f using Z);r;irn
and the loss function £(6) defined in Equation (7) (Line 3). Once
the prediction module f is trained, we construct the verification
training set DI from D;gaiirn as described in Equation (9) (Line
4). This set consists of labeled context subsets based on whether
they enable correct predictions by the trained prediction module.
Finally, in Line 5, we train the verification model IT using D2
with the binary cross-entropy loss £y (6r1) defined in Equation (12).
The procedure concludes by returning the trained f and IT (Line
6). When Lines 4 and 5 are skipped, it is the training process of
REVEAL, which only involves context retrieval and training the
prediction module f.

The inference processes of REVEAL and REVEAL+ have already
been illustrated in Figure 3.

6 Experiments

We conduct extensive experiments to evaluate our proposed meth-
ods, REVEAL and REVEAL+, on real-world datasets for both
CTA and CPA tasks. The implementation is publicly available at:
https://github.com/TommyDzh/REVEAL.
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Algorithm 3: REVEAL+ Training Procedure

Input: training set D", initialized prediction module f and
verification model II

Output: trained prediction model f, verification model IT

Obtain column contexts C for training targets in D" by
Algorithm 1;

Construct Z);fllr“ from DTN by Equation (6);

Train f on D}t):“llr“ using .C(Q) in Equation (7);

Construct DI from Z)I‘)raai‘r“ by Equation (9);

Train IT on DI using L, (6y1) in Equation (12);

return trained f, IT;

)

w

'S

[

o

Table 2: Dataset statistics.

Benchmark # Tables # Types Total # Cols # Labeled Cols (I\:/Im/Max/Avg
ols per Table
GitTablesDB 3,737 101 45,304 5,433 1/193/121
GitTablesSC 2,853 53 34,148 3,863 1/150/12.0
SOTAB-CTA 24,275 91 195,543 64,884 3/30/8.1
SOTAB-CPA 20,686 176 196,831 74,216 3/31/9.5
WikiTables-CTA 406,706 255 2,393,027 654,670 1/99/5.9
WikiTables-CPA 55,970 121 306,265 62,954 2/38/55

6.1 Experiment Setup

Datasets. We use six benchmark datasets with real-world tables,
four for CTA (GitTablesDB, GitTablesSC, SOTAB-CTA, WikiTables-
CTA) and two for CPA (SOTAB-CPA, WikiTables-CPA). Table 2
summarizes the dataset statistics. GitTablesDB and GitTablesSC
are part of the SemTab 2022 benchmark [1], sourced form GitTa-
bles [18], and are both used for the CTA task. GitTablesDB columns
are annotated with DBpedia properties, while GitTablesSC uses
Schema.org properties. The tables in the two datasets are wide.
For example, the average of columns per table in GitTablesDB is
12.1, with some tables having up to 193 columns. The SOTAB-CTA
and SOTAB-CPA datasets are part of the WDC Schema.org Table
Annotation Benchmark (SOTAB) [27], which targets the CTA and
CPA tasks using 91 Schema.org types and 176 Schema.org relations,
respectively. The number of columns in the tables in these datasets
can be up to 31. The WikiTables-CTA and WikiTables-CPA datasets
are based on the WikiTables corpus from Wikipedia and introduced
by TURL [6]. They are used for CTA and CPA, respectively, with
255 DBpedia types and 121 DBpedia relations. Note that in these
datasets, we uses all columns from the original tables. The average
number of columns per table in WikiTables-CTA and WikiTables-
CPA is not large, but the tables can still be wide with the average
number of columns being 5.9 and 5.5, respectively.
Baselines. We compare REVEAL and REVEAL+ against strong
baselines, including six state-of-the-art models specifically designed
for annotation tasks and two large language models (LLMs).
o TURL [6] adapts the transformer architecture to better capture
table structure. It is pretrained on a large-scale table corpus.
e Sato [47] uses table-level features and models pairwise dependen-
cies between neighboring columns for column type predictions.
e Doduo [39] introduces a serialization strategy for tables, enabling
language models to effectively encode columns for annotation
tasks. It is fine-tuned via multi-task training.
e RECA [40] utilizes named entity-based schema alignment to
consider inter-table information.
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e Starmie [14] develops a contrastive multi-column pretraining to
enhance embeddings by incorporating semantics within tables.

e Watchog [32] leverages contrastive learning on unlabeled table
corpora to learn representations for table understanding tasks.

e TableLlama [48] is an open-source generalist model for a various
table-based tasks. It fine-tunes LLMs on an extensive corpus of
tables and associated tasks.

e Qwen-Plus (0-shot / 5-shot) [44] is an LLM with strong capabil-
ities on NLP and table-based tasks. We evaluate both 0-shot and 5-
shot in-context learning variants, following the setup in [25, 26].

Evaluation Metrics. For effectiveness, we adopt the standard eval-
uation metrics used in prior work [6, 18, 27] for CTA and CPA tasks,
including Micro-F1 and Macro-F1, since the tasks are multi-class
classification problems. Following prior work, we evaluate perfor-
mance using ground-truth labels, without considering semantic
hierarchies or specificity. A prediction is correct if it matches the
ground truth. Micro-F1 is the weighted average of F1 scores of
classes, where each class contributes proportionally to its number
of samples. It reflects overall performance but is biased toward
frequent classes. Macro-F1 is the unweighted average of F1 scores
across all classes, treating each class equally. It is more sensitive
to performance on rare or underrepresented classes. We perform
5-fold cross-validation on GitTablesDB and GitTablesSC follow-
ing [32]. For the remaining datasets, we train and evaluate each
model five times with different random seeds, except the LLM base-
lines that directly use task-specific prompts for predictions [48] as
explained below. We report the mean and standard deviation of
results over five runs.

Implementations. For baselines, we obtain their publicly available
codebases and adopt them for the CTA and CPA tasks. We adopt
BERT as the base language model for Doduo, Starmie, RECA, TURL
and Watchog to ensure a fair comparison. For LLM-based methods
TableLlama and Qwen-Plus, we utilize task-specific prompts for
CTA and CPA, following the prompt templates provided in [48],
to generate predictions for column types and relations. We run
the offically released TableLlama and access Qwen-Plus API for 0-
shot and 5-shot in-context predictions. For 5-shot, demonstrations
are randomly sampled from the training set for each test instance,
following [25, 26]. We implement our methods REVEAL and RE-
VEAL+ in Python using PyTorch and the Transformer library [43].
The context-aware encoder is built on BERT as well. We use the
Adam optimizer to train. The learning rate is set to 5e-5, the de-
sired size of column context K is fixed at 8 across all datasets, and
the maximum input sequence length is set to 256 tokens. For long
columns, we follow prior work [32, 39] by allocating tokens equally
across columns and truncating row-wise, using the earliest rows
that fit within the token limit. We select the best model checkpoint
based on the highest Micro-F1 or Macro-F1 score on validation data.
For the verification model in REVEAL+, it is a three-layer MLP
trained after the annotation model. We use a batch size of 64 for
GitTablesDB and GitTablesSC, and 512 for the other datasets. The
learning rate is tuned from {5e—5, le—4, 5e—4}. All experiments are
conducted on a Linux server with an Intel Xeon Gold 6226R CPU
with 2.90GHz and an NVIDIA RTX 3090 GPU.
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Table 3: Overall performance by Micro-F1 (%) and Macro-F1 (%) (mean + std).

GitTablesDB GitTablesSC SOTAB-CTA SOTAB-CPA WikiTables-CTA WikiTables-CPA ‘

Method Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 ‘ Avg. Rank
TURL 48.20 £0.98 19.56 +2.45 58.15+0.98 26.26+4.70 80.13+0.25 77.34+0.98 66.11+0.31 60.52+0.27 90.53+0.07 66.40+0.23 89.60+0.03 80.49 + 0.36 7.42
Sato 46.05 £ 0.87 23.50 +1.01 55.83+0.3¢4 30.07 £0.94 71.74+0.25 70.01+0.27 54.06+0.15 46.59+0.24 61.56+0.84 32.05+0.72 77.09+0.15 49.70 + 0.26 8.33
Doduo 44.77 £ 436 21.63+3.26 52.36+294 25.09+5.01 81.32+0.00 78.51+0.00 7885+0.49 7495+049 92.19+1.01 7410+0.86 91.60+0.23 83.81+0.15 6.58
Starmie 54.43 £0.93 30.71 £3.58 64.87 +2.47 37.04+4.33 87.95+0.27 86.84+0.08 78.92+0.13 75.69+0.31 92.91+0.08 76.45+044 92.51+0.36 85.69+0.47 3.50
RECA 53.83+1.67 25.70+5.49 6452+ 1.69 3510381 68.52+0.35 6821+0.71 54.31+0.99 47.56+0.95 91.27+0.03 73.36+0.82 88.90+0.94 78.39 +1.09 7.17
Watchog 5396 +0.78 28.89 £3.34 65.24+1.90 36.06+3.39 86.23+0.22 84.19+0.06 76.52+0.11 72.60+0.25 92.25+0.06 73.77+0.35 92.28+0.00 8527 +0.25 4.75
Qwen-Plus (0-shot) 53.51 £0.60 27.75+1.81 66.80 + 1.82 40.35 + 2.43 48.26 + 0.00 44.36 £ 0.00 52.68 + 0.00 44.01 £0.00 31.70 +£0.00 12.28 +0.00 27.63 £ 0.00 18.13 + 0.00 8.67
Qwen-Plus (5-shot) 57.48 + 1.20 33.66 + 1.57 63.21 + 1.24 44.81 # 2.60 52.61 +0.00 48.82+0.00 53.48+0.00 4541+0.00 32.21+0.00 13.01+0.00 28.18+0.00 18.35 0.00 7.58
TableLlama 11.03+£0.74 9.70+£1.53 12.85+0.91 11.71+1.62 23.35+0.00 20.59+0.00 16.96+0.00 13.81+0.00 91.85+0.00 76.04+0.00 92.12+0.00 85.67 +0.00 8.92
REVEAL 59.79+0.98 36.40 £3.17 69.26 +0.93 41.98+1.96 88.35+0.00 87.60+0.00 80.45+0.25 77.81+0.24 93.14+0.51 77.81+043 92.76+0.11 86.40 £ 0.07 2.00
REVEAL+ 61.53 +2.27 38.30+1.16 70.90 +2.18 45.82 + 1.16 88.74 + 0.22 88.10 + 0.06 80.81 +0.07 78.15+0.15 93.00 + 0.04 78.07 +0.22 92.80 + 0.18 86.81 + 0.23 1.08
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Figure 5: Performance on tables with a small to large number of columns.

6.2 Overall Results

Table 3 reports the overall performance of REVEAL and REVEAL+
compared to all baselines across all benchmark datasets. The best,
second, and third performing methods are highlighted in bold,
underlined, and double-underlined, respectively.

The overall observation is that REVEAL and REVEAL+ consis-
tently outperform all baselines across all datasets under both met-
rics, demonstrating the effectiveness of our proposed techniques
for CTA and CPA tasks. REVEAL+ and REVEAL achieve the av-
erage rank of 1.08 and 2.0, respectively, indicating their superior
performance compared to the other methods. Especially on the
datasets with wide tables with large average columns per table
(GitTablesDB, GitTablesSC, SOTAB-CTA, and SOTAB-CPA), RE-
VEAL and REVEAL+ achieve significant improvements over the
best baselines in Micro-F1 and Macro-F1 metrics. For example, on
GitTablesDB, REVEAL+ achieves 4.05% and 4.64% improvement
in Micro-F1 and Macro-F1 over the best baseline Qwen-Plus (5-
shot), and REVEAL also achieves significant improvements of 2.31%
and 2.74% in Micro-F1 and Macro-F1. On SOTAB-CPA, REVEAL+
and REVEAL achieve significant improvements as well. REVEAL+
improves Macro-F1 by 2.46% and REVEAL by 2.12% over the best
baseline Starmie. On WikiTables-CTA and WikiTables-CPA, where
the average number of columns per table is not large, baselines per-
form well, but REVEAL and REVEAL+ still outperform all baselines.
The overall results demonstrate the effectiveness of our proposed
retrieval, context-aware encoding, and verification techniques in
Sections 4.1, 4.2 and 5, to select high-quality context columns for
accurate CTA and CPA tasks, especially in handling wide tables.

Moreover, observe that REVEAL+ consistently outperforms RE-
VEAL across almost all datasets under Micro-F1 and Macro-F1,
except WikiTables-CTA where REVEAL performs slightly better in
Micro-F1. The average rank of REVEAL+ is 1.08. The improvement
of REVEAL+ over REVEAL is particularly significant in Macro-F1,
which treats majority and minority classes equally. For example,

on GitTablesDB and GitTablesSC, REVEAL+ improves Macro-F1 by
1.90% and 3.84%, respectively. This indicates the verification model
in Section 5 is effective in refining the retrieved context columns
and improving the performance.

Besides, among the baselines, Starmie performs the best, with
average rank of 3.5, and it adopts contrastive pretraining to capture
column semantics. The baselines designed for annotation tasks, e.g.,
Watchog and Doduo, typically achieve better performance than
the LLM-based methods. This indicates that specific techniques
need to be designed for table annotation tasks. The LLMs yield
unstable performance across datasets. Qwen-Plus (0-shot) and (5-
shot) perform well on GitTablesDB and GitTablesSC, but they are
significantly worse on the other four datasets, with average ranks
of 8.67 and 7.58, respectively; TableLlama achieves strong results
in WikiTables-CTA and WikiTables-CPA but fails in the other four
datasets, resulting in rank of 8.92. This inconsistency may depend
on if similar table corpus were seen during its pretraining or not.
These results suggest that table annotation tasks remain challenging
and cannot be totally solved by LLMs alone.

Moreover, we report that REVEAL+ obtains a subset of columns
for 88.91% of tables in GitTablesDB, 84.25% in GitTablesSC, 93.44%
in SOTAB-CTA, 76.99% in SOTAB-CPA, 25.00% in WikiTables-CTA,
and 35.81% in WikiTables-CPA. This demonstrates that our retrieval
and verification techniques (Sections 4 and 5) effectively identify rel-
evant context columns for most targets. Although WikiTables-CTA
and WikiTables-CPA have narrower tables (Table 2), our approach
still refines context for a significant portion of tables.
Performance on Tables with Different Column Numbers. We
further analyze the performance of REVEAL and REVEAL+ on ta-
bles with different column numbers, in groups of 1-4, 5-8, 9-12, 13-16,
and 17+ columns, as shown in Figure 5. Observe that the baselines
tend to have significant performance drop on tables with many
columns, especially on wide tables with more than 16 columns,
e.g., Starmie on GitTablesDB and GitTablesSC, and Watchog on
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Table 4: Accuracy (%) on tables with more than 100 columns.

Dataset Starmie RECA Watchog REVEAL REVEAL+
GitTablesDB 28.6 47.6 42.7 52.4 66.7
GitTablesSC 25.0 62.5 37.5 62.5 62.5

WikiTables-CTA and WikiTables-CPA. This is likely due to the in-
creased complexity and noise introduced by irrelevant or redundant
columns, which can hinder the model’s ability to focus on the most
informative features for annotation tasks. In contrast, REVEAL and
REVEAL+ maintain relatively stable performance when the num-
ber of columns increases, especially when the number of columns
exceeds 16 on GitTablesDB, GitTablesSC, WikiTables-CTA and
WikiTables-CPA. Furthermore, in GitTablesDB and GitTablesSC,
there are 21 and 8 targets in tables with 100+ columns, respectively.
In Table 4, we report the performance on these extremely wide ta-
bles. Note that a small sample size may make performance sensitive
to incorrect predictions. Nevertheless, REVEAL+ consistently per-
forms the best, followed by REVEAL. The observations validate the
proposed techniques in Sections 4.1 and 5, to explicitly select the
most informative context columns for CTA and CPA tasks, which
helps mitigate the noise introduced by irrelevant columns. This
leads to more robust performance of REVEAL+ and REVEAL across
different table sizes.

6.3 Efficiency Analysis

Figure 6 reports the inference time of REVEAL and REVEAL+ com-
pared to other baselines. First, observe that REVEAL ranks top
among the methods across all datasets, with the fastest inference
time on SOTAB-CTA and SOTAB-CPA and similar efficiency as
Doduo on the other datasets. The efficiency of REVEAL is attributed
to its retrieval-based approach, which avoids the need for full-table
input. More importantly, as shown in Table 3, REVEAL achieves
better quality than existing methods for the annotation tasks. This
indicates that REVEAL can achieve high-quality annotation with
a more efficient inference process. Second, REVEAL+ incurs ad-
ditional inference time due to running the verification model to
further refine the column context, in order to further boost ef-
fectiveness over REVEAL. But still, the efficiency of REVEAL+ is
moderate among all methods, substantially faster than RECA, Sato
and TableLlama. As shown in Table 3, REVEAL+ achieves the top-1
performance on almost all settings, significantly improving the
performance of REVEAL. As mentioned, in the CTA and CPA tasks,
result quality is relatively more important since the inference can
be done offline and time is not a critical factor. Therefore, REVEAL+
serves as a good trade-off for effectiveness over efficiency.

Top-Down Verification Inference vs. Exhaustive Verification.
We evaluate the greedy top-down verification inference designed
in Section 5.2 against exhaustive verification, which evaluates all
possible context subsets S’ to get S, in terms of both accuracy
and efficiency, in Figure 7. The left figure shows that the top-down
strategy achieves nearly the same Macro-F1 as exhaustive search,
indicating that it effectively finds the high-quality verified column
context. The right figure shows that the top-down verification in-
ference is significantly more efficient than exhaustive search. For
example, on SOTAB-CPA, the top-down strategy reduces inference
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time from 5263s to 778s, achieving over 6x speedup while maintain-
ing accuracy. Figure 7 demonstrates the effectiveness and efficiency
of the proposed top-down verification inference technique.

6.4 Experimental Analysis

Varying K of Column Context Size. In the retrieval method, we
retrieve a column context of K columns for a target in a table. We
evaluate the impact of varying K in {0, 2, 4, 8, 16} on the perfor-
mance of REVEAL and REVEAL+, as reported in Figure 8. Observe
that the performance of both REVEAL and REVEAL+ improves as
K increases to 8 on all datasets, except GitTablesSC with a little
fluctuation. Then the performance becomes stable with further
increase of K to 16. Observe that at the same K value, REVEAL+
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Table 5: Ablation study in Macro-F1 (%).
GitTablesDB GitTablesSC SOTAB-CTA SOTAB-CPA

w/o encoding 30.69 39.22 87.05 77.48
TURL encoding 27.22 37.98 86.89 76.98
context-aware encoding 36.40 41.98 87.60 77.81

Table 6: Retrieval method vs. other strategies.

Micro-F1 GitTablesDB GitTablesSC SOTAB-CTA SOTAB-CPA | Avg. Rank

Random 58.57 67.52 88.02 79.56 475
First 60.13 68.25 87.55 79.68 4.25
Nearby 60.18 68.85 88.28 80.78 2.75
Similar 58.47 67.86 87.87 81.19 4.0
Position  60.40 69.24 87.51 78.07 4.0
Ours 61.53 70.9 88.74 80.81 1.25

outperforms REVEAL, demonstrating the effectiveness of the ver-
ification techniques in Section 5. Figure 8 shows that using few
columns with a small K may omit critical context, while increasing
K beyond a moderate value yields diminishing returns. Therefore,
we set K = 8 by default.

Ablation on Context-aware Encoding. We conduct an ablation
study on the context-aware encoding in Section 4.2 by comparing
REVEAL with and without the encoding, as well as with TURL
encoding [6]. In Table 5, our proposed context-aware encoding
achieves the best performance across all datasets. For example,
on GitTablesDB, REVEAL with context-aware encoding improves
Macro-F1 from 30.69% (without encoding) to 36.40% and also outper-
forms TURL encoding by a large margin. These results demonstrate
the effectiveness of distinguishing context columns from target
columns during encoding, as designed in Section 4.2.

Study on the Retrieval Technique in Section 4.1. In Section 4.1,
we propose a column retrieval method that selects a compact and in-
formative subset of K columns as the column context C. Our design
emphasizes both semantic relevance and diversity, and employs
MMR for context selection. We compare it with several alternative
strategies. In particular, we compare the following strategies: Ran-
dom selects K context columns at random; First takes the first K
columns from the table; Nearby selects the columns adjacent to
the target; Similar retrieves the top-K columns with the highest
embedding similarity to the target column; Position selects the two
leftmost columns and the left and right columns of the target. Note
that all these methods are implemented within the same REVEAL+
framework and only differ in how to get C in Section 4.1. The results
are reported in Table 6, and the improvement of ours in the last
row over the others is solely achieved by Section 4.1. Observe that
our method with the retrieval technique in Section 4.1 performs
better than the other strategies, except Similar on SOTAB-CPA.
This confirms the effectiveness of combining semantic relevance
and diversity in column retrieval, as emphasized in our design.
Study on Equation (2). We study Equation (2) by introducing a
weight A to control the trade-off between relevance and diversity:
g(c,7,C) = Acos(ec, er) — (1 — A) maxo» ¢ cos(ec, ec). A smaller
A emphasizes diversity, while a larger A emphasizes relevance. By
default, we consider same weight for both terms, i.e., A = 0.5. Fig-
ure 9 reports the performance of REVEAL and REVEAL+ for A in
{0.1,0.3,0.5,0.7,0.9}. As A increases, the performance of both meth-
ods generally improves and then plateaus or decreases. REVEAL+
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REVEAL+ by varying the ratio of training data.
Table 7: REVEAL+ with different verification methods.

Macro-F1 GitTablesDB  GitTablesSC SOTAB-CTA SOTAB-CPA

Random 34.96 38.31 76.31 67.90
Max Confidence 34.83 34.32 76.35 69.77
Majority Voting 36.71 40.02 83.69 73.08
Weighted Voting 36.73 39.27 84.07 73.77

REVEAL+ 38.30 45.82 88.1 78.15

consistently outperforms REVEAL across all datasets. Notably, RE-
VEAL+ achieves its best performance at A = 0.5 on most datasets,
except for SOTAB-CPA, where REVEAL+ with A = 0.7 yields even
higher quality. These results indicate that it is not possible to simply
tune Equation (2) to let REVEAL to achieve the same performance
as REVEAL-+, validating the necessity of the verification techniques
in Section 5 for REVEAL+ to further enhance performance.
Learning Efficiency of the Verification Model. In Section 5,
we construct a labeled dataset to train the verification model. To
evaluate its learning efficiency, we vary the size of its training set
from 20% to 100% and report the results of REVEAL+ in Figure 10.
When the training set ratio increases, the performance of REVEAL+
generally improves in a mild way, indicating that the verification
model benefits from more training data, but is not sensitive to that
and can achieve good performance with limited training data. Note
that on GitTablesDB and GitTablesSC, the performance of improves
more significantly than on the other datasets. The reason is that
GitTablesDB and GitTablesSC contain more complex tables with
wider structures. Therefore, we need to have a sufficiently trained
verification model to verify if a subset of columns is helpful for
the target annotation tasks. Figure 10 illustrates that the verifica-
tion model with the top-down inference technique in Section 5 is
effective and robust to learn from training data.
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Table 8: Performance of baselines with C.
GitTablesDB  GitTablesSC ~ SOTAB-CTA ~ SOTAB-CPA

Watchog 53.96 28.89 6524 36.06 86.23 84.19 76.52 72.60
Watchog + C 5427 29.32 65.35 37.06 87.90 86.47 79.66 75.91

Starmie 54.43 30.71 64.87 37.04 8795 86.84 78.92 75.69
Starmie + C 56.98 32.11 66.88 37.47 8829 87.49 80.40 76.78

REVEAL+ 61.53 383 709 4582 88.74 88.1 80.81 78.15

Table 9: Top-down vs. bottom-up verification inference.
GitTablesDB GitTablesSC SOTAB-CTA SOTAB-CPA
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

bottom-up  55.86 31.09 63.49 28.48 65.29 62.30 68.43 64.85
top-down  61.53 38.30 70.90 45.82 88.74 88.10 80.81 78.15

Table 10: REVEAL+ using C vs. full column set.
GitTablesDB GitTablesSC SOTAB-CTA SOTAB-CPA
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

full set  60.27 36.75 69.58 42.45 88.37 87.61 79.60 77.11
C 61.80 39.12 71.03 46.04 88.78 88.17 80.90 78.30

Study on the Verification Model. In REVEAL+, we employ a
learned verification model with a top-down inference strategy to
identify S from C. We compare it against several alternative meth-
ods: Random, which selects S from C randomly, with results aver-
aged over 10 runs; Max Confidence, which selects the subset with the
highest softmax probability from the prediction module f; Majority
Voting, which determines the final label based on the most frequent
label predicted across all subsets of C; and Weighted Voting, which
averages the softmax probabilities across all subsets and selects
the label with the highest mean probability. Table 7 reports the
Macro-F1 results. Observe that REVEAL+ with the proposed veri-
fication model consistently outperforms all other methods across
all datasets, with a significant margin. This demonstrates the effec-
tiveness of our verification model in selecting informative column
contexts for the target column, leading to improved performance
in the annotation tasks.

Applying Baselines over C. We apply strong baselines, Watchog
and Starmie, on the column context C retrieved in Section 4.1. As
shown in Table 8, both baselines exhibit improved performance
when using C, compared to using original tables. This demonstrates
the effectiveness and generalizability of our idea of retrieving a
compact and informative column context for the target. Nonethe-
less, REVEAL+ still significantly outperforms both baselines, when
they use the same C, validating the effectiveness and necessity of
our techniques in Section 4.2 and Section 5.

Top-down vs. Bottom-up Verification. We compare the top-
down verificaiton inference in Section 5.2 with a bottom-up ap-
proach. The bottom-up approach starts with the top-ranked column
in Algorithm 1 and iteratively adds columns until either all columns
in C are included or the quality score from the verification model no
longer improves, i.e., early stopping. Table 9 shows that bottom-up
search is outperformed by our top-down approach. This supports
our intuition in Section 5.2 that top-down verification, which starts
from a larger high-quality context and prunes only a few noisy
columns, can get better S. In contrast, bottom-up verification may
be more sensitive to the initial column choices.
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Table 11: Performance on different types of columns.
GitTablesDB GitTablesSC

text numeric date-time text numeric date-time

Starmie 49.85 70.51 53.01 56.62 80.54 58.00
REVEAL+ 56.88 70.78 59.04 61.76 84.90 62.00

Table 12: Results with 512 tokens.

GittablesDB GittablesSC SOTAB-CTA SOTAB-CPA
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Watchog  54.27 2937 6444 3475 8656 8457 7806  71.90

Starmie  54.16 3144  64.85 3831  87.92 8691 7877 7577
REVEAL 59.88  36.60 7033 4241 8940 8866  80.68  78.05
REVEAL+ 62.07 39.56 7136 4635 89.79 89.18 80.99 78.16

(a) Original table (GitTables_4421)

ID Name @ status EndDate IsPolicy Num
Col 0 Col_1 Col 9 | Col_10 | Col_11 Col_34 | Col_35
Zero IPA -
2 EuThink 2015 Yes N.A. 0 0
Cyprus
4 Roadkill.. 2017 Yes 2019 1 1

[ STARMIE-Year®
(b) Column context C from retrieval

ID Email Country Type EndDate Size Status Description
Col_0 Col_3 Col_6 Col_8 Col_11 | Col_15| Col_16 Col_18
info@euthi Private P
2 kit Italy sector N.A. Large No Policy implemta ...|
. IConside Problem
4 |UNKNOWN| Cyprus |Academic| 2019 able Yes definition
(c) Annotation with verified column context §
Email Type @ EndDate Status Description
Col_3 Col_8 Col 9 | Col_11 Col_16 Col_18
|nfor$?tuth| Private sector| 2015 N.A. No Policy implemeta ...
UNKNOWN|  Academic 2017 2019 Yes Problem definition

[ REVEAL+-StartDate¥’
Figure 11: Illustrative Example

Performance of REVEAL+ on Full Column Set. We compare
REVEAL+ when verifying over the retrieved context C versus veri-
fying over the full set of columns in a table. As shown in Table 10,
REVEAL+ achieves consistently better results using C than using
the full column set. This validates that the retrieval stage in REVEAL
effectively eliminates irrelevant columns, enabling more focused
and informative context for effective verification in REVEAL+.

Performance on Different Column Types. We analyze perfor-
mance by column type: text (e.g., name, description, title), numeric
(e.g., value, age, price), and datetime (e.g., date, year, time). Table 11
reports the results of REVEAL+ and the baseline Starmie for each
column type. Both methods achieve higher accuracy on numeric
columns, likely because numeric types are more distinct and easier
to classify than text or datetime columns. Importantly, REVEAL+
consistently outperforms Starmie across all types.

Performance with 512 Tokens. We set the maximum input length
of BERT to 256 tokens, following [14, 32]. In [40], it shows that
varying between 256 and 512 tokens does not affect performance
much. In Table 12, we report the results with 512 tokens, compar-
ing with strong baselines. Observe that using 512 tokens yields
minor improvements over 256 tokens, and our REVEAL+ and RE-
VEAL consistently outperform the baselines. These results further
demonstrate the effectiveness and robustness of our methods.
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6.5 Illustrative Example

Figure 11 presents an example on a table GitTables_4421 with 136
columns from GitTablesDB, describing citizen science projects. Fig-
ure 11(a) shows a sample view of the table, where the semantic types
of columns are provided for reference but are not used in the CTA
task. The target column Col_9 in gray contains year-like values,
such as 2015 and 2017. Its ground truth type is StartDate, indi-
cating the start date of a project, paired with the EndDate column
Col_11. The strong baseline, Starmie, predicts the target column
as Year when using the entire table as input. While reasonable,
this prediction is incorrect. The table contains many irrelevant
columns, such as Col 34 and Col_35, which do not contribute to
predicting the target column type. These irrelevant columns over-
whelm the baseline model, leading to suboptimal predictions. Fig-
ure 11(b) shows the column context C with 8 columns retrieved
using our retrieval method in Section 4.1. These columns, such
as EndDate, Status, and Description, are closely related to the
project information and help clarify the target column’s meaning.
This demonstrates the retrieval method’s ability to filter out irrele-
vant columns effectively. Figure 11(c) shows the verified column
context S selected from C by the verification model in REVEAL+
(Section 5). Compared to C, the verification model further refines
the context by removing less relevant columns, such as Size, ensur-
ing only the most informative columns remain. With the verified
column context, REVEAL+ correctly predicts the target column
type as StartDate, matching the ground truth and together with
the EndDate column, indicating a complete project timeline.

7 Related Work

Early methods for column annotation rely on hand-crafted and
statistical data features. SemanticTyper [35] utilized TF-IDF for
textual data and Kolmogorov-Smirnov tests [29] for numeric data
to distinguish data types. Pham et al. [34] extended this approach
by incorporating additional features, such as the Mann-Whitney
test for numerical data and Jaccard similarity for textual data, to
train logistic regression and random forest models for annotation.

Building on advancements in machine learning, recent studies
have incorporated semantic features, framing CTA and CPA as
multi-class classification problems. Sherlock [19] extracts multi-
granularity tabular features, such as character-level, word-level,
segment-level, and global-level, and trains deep learning classifiers
for semantic type prediction. Sato [47] extends Sherlock by model-
ing table-level topics and correlations between neighbor columns.

Subsequently, language models like BERT [8] have been em-
ployed to learn representations of tabular data for table under-
standing [21, 45]. Column annotation methods based on language
models [6, 32, 39] have gained significant attraction. For instance,
TURL [6] introduces a pre-training and fine-tuning framework that
uses a visibility matrix to mask irrelevant table components and
generate column embeddings for downstream tasks. Doduo [39]
developes a multi-task learning framework based on BERT, which
takes the entire table as input and predicts column types and re-
lations using a single model. It achieves high annotation quality
by modeling token-level interactions across columns through self-
attention. RECA [40] aligns schema-similar and topic-related tables
with a novel named entity schema to address the complexities of
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wide tables and inter-table contexts. Watchog [32] employs con-
trastive learning techniques to tackle challenges associated with
data sparsity and class imbalance in column annotation tasks, re-
ducing reliance on high-quality annotated instances. Starmie [14],
originally designed for dataset discovery in data lakes, proposes
a self-supervised contrastive learning framework to train a high-
quality column encoder. We adapt it to column annotation and
compare its performance with our methods. These studies under-
score the importance of effective representational learning for ac-
curate annotations. However, existing models typically process all
columns in a table as input for a target, relying on transformers
and attention mechanisms to infer useful semantics and column in-
teractions. This approach often fails to filter out irrelevant columns,
introducing noise that can degrade performance. In contrast, our
method explicitly identifies and validates contextually relevant
columns for the target column, enabling a more precise understand-
ing of column semantics. Shraga and Miller [38] propose a different
problem, semantic data versioning, focusing on explaining changes
between dataset versions by identifying transformations from an
origin relation to a goal relation. Their Explain-Da-V method uses
functional dependency (FD) discovery to select column subsets for
efficient search. In contrast, we work on column annotation for
tables with missing metadata—a distinct task that could benefit data
versioning. Our retrieval and verification techniques in Sections 4
and 5 are technically different from the FD-based approach in [38].

Recent studies have explored the use of LLMs [12, 44, 49] for
column annotation tasks [15, 31, 48]. For instance, TableLlama [48]
fine-tunes LLMs on various table-related tasks, including column
annotation. In our experiments, we compared our method with
TableLlama and a general-purpose LLM, Qwen-Plus [44], and ob-
served that they perform suboptimally on column annotation tasks.
This suggests that the effectiveness of LLMs in such tasks depends
heavily on whether they have been trained or fine-tuned on relevant
table-specific corpora. Consequently, column annotation remains a
challenging problem that cannot be effectively addressed by LLMs
alone and requires dedicated designs and methods.

In addition, several other tasks are related to tabular data, includ-
ing table discovery [7, 13, 20], such as table join search [9, 10, 50] and
table union search [14, 23, 33], as well as schema matching [28, 41]
and tabular data synthesis for dataset augmentation [3, 4]. These
tasks rely heavily on effective table understanding and column
representation learning. In future work, we plan to extend our
techniques to support these broader table-related applications.

8 Conclusion

We propose a novel retrieve-and-verify framework comprising the
REVEAL and REVEAL+, which selectively incorporate relevant
column context to enhance annotation accuracy. REVEAL employs
an unsupervised retrieval strategy to construct compact and infor-
mative column subsets, combined with context-aware encoding
techniques that differentiate between target and context columns to
learn effective embeddings. Building on this, REVEAL+ refines the
retrieved column context using a lightweight verification model,
formulating context verification as a supervised classification prob-
lem and introducing a top-down inference method to efficiently
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identify high-quality contexts. Extensive experiments on six bench-
mark datasets validate the effectiveness of our framework, with
both REVEAL and REVEAL+ significantly surpassing existing state-
of-the-art methods. These findings underscore the importance of
selective context in table understanding and present a scalable, gen-
eralizable solution for real-world applications. As future work, a
direction is to leverage the context quality scores learned by the
verification model in REVEAL+ to guide the retrieval in REVEAL in
a supervised manner, potentially improving performance. We also
plan to extend our framework to other tabular data tasks, e.g., table
generation, and explore integration with advanced large models.
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